变频器的辅助电源设计

发布时间:2023-08-25  

上篇我们聊了变频器主回路的设计和计算,主要的还是主要参数的计算以及选型的注意事项,今天我们继续往下说,聊聊变频器的辅助电源部分。


01前言

辅助电源,也就是交直交主回路意外的其他变换电源,一般我们习惯叫开关电源。开关电源综合应用了半导体变流技术、电子及电磁技术、自动控制技术等电力电子技术,它和线性稳压电源相比,具有功耗小、效率高、体积小、重量轻、稳压范围宽等突出的特点,因而被广泛应用变频器的辅助电源。但开关电源突出缺点是产生较强的电磁干扰EMI。它产生的EMI信号,既占有很宽的频率范围,又有一定的幅度。这些EMI信号经过传导和辐射方式污染电磁环境,对通讯设备和电子仪器造成千扰。如果处理不当,开关电源本身就会变成一个子扰源。


由于IGBT模块化的程度越来越高,主回路的设计不再那么复杂,反倒是开关电源这块儿显得更为难搞。今天我们就来简单聊一聊开关电源部分。


之前我们在DC-DC部分讲过几个主要的电路拓扑,有聊过正激和反激两种转换方式,而对于小功率开关电源设计中,单端反激式变换器是应用最为广泛的一种拓扑,多路输出较为方便。


02单端反激式原理

我们在来简单地了解一下单端反激式的变换原理,下面是一个简单的电路图:

wKgZomQw5IiAa3ZXAAAre0k6nyk236.jpg

单端反激变换电路是脉冲变压器原副边隔离多输出的结构,原边开关Q1导通,从同名端的标注可知,副边感应电压因二极管D反向不能产生回路电流,原边输入能量以磁能形式存储在隔离变压器(也是电感器)中;当开关Q1断开时,二极管D正向偏置导通,副边对电容充电和对负载供电的电流。由于开关Q1与二极管D的工作相位相反,即开关Q1关断时D开通,耦合能量经副边传至负载,因此称作反激式变换器。该电路的优点就是简单,只需要一个磁元件,一个开关就可以完成多输出隔离,降、升压的要求。


该电路的磁元件设计有一定要求,它既是隔离变压器,又是储能的电感,在多绕组输出时要求有良好的交叉调节特性(即副边绕组相互之间耦合小)。由于隔离变压器具有储能作用,为了使磁芯不易饱和,一般使用软磁粉末压制的磁芯并增加磁芯气隙来增大磁芯的储能,使其不易达到饱和。


这里使用了反馈回路进行输出电压控制,确保不同负载下输

出电压的稳定(普遍都会有此反馈)。

接下来我们以一个例子来聊聊反激式开关电源的设计步骤。


03设计和计算

设计要求:

1、输入电源范围:DC250V~DC850V

2、电源输出稳态精度指标:

第1路:输出电压+15±5%V,输出功率33W;

由此进行二次稳压,输出电压+5±5%V,输出功率4W;

第2路:输出电压-15±5%V,输出功率2W;

第3路:输出电压24±10%V,输出功率10W;

【注】:

①第1路和第2路为共地电源,第3路为独立电源;

②当输入电压小于400V时,开关电源能正常工作,输出功率可降为20W,当输入电压在400V~800V时,要求输出功率能达33+2+10=45W。

3、电压纹波指标:各路输出纹波<2%。

4、电源噪声指标:各路输出噪声<5%(20MHz)。

5、输出功率指标:输出功率10~45W

6、绝缘耐压及安规指标:电源输入对输出耐压3750VAC。功率模块(1200V模块)驱动电路电源之间绝缘电压2500VAC。功率模块(600V模块)驱动电路供电的电源之间绝缘电压1200VAC。


确定拓扑

由于电源输出路数较多,且输出功率不大,电路选取完全能量传递方式单端反激式电路结构,如下图:

wKgZomQw5IiAPpc1AABlaJYWTPQ864.jpg

开关管驱动控制芯片选电流控制型PWM芯片UC2844(这类芯片也是蛮多的,系列延伸也多,大家可以去了解一下),输出稳压控制采用TL431基准源,开关频率设定为41kHz。


确定电源工作状态参数

①计算变压器原边输入功率

我们这里假设变压器的传输效率是95%,那么其原边的输入功率为:

Pin=Pout/0.95=45/0.95=47.4W

②确定最大导通占空比

设最小输入电压Uin,min=400V时,Dmax=31%

③确定开关频率和变压器原边电感量

wKgaomQw5IeAL98TAAAXCNi8zBA505.jpg

当输入电压为400V时,

wKgaomQw5IeAZqc8AAAXDMeDN2Q412.jpg

假设开关频率f=41kHz,则有

wKgaomQw5IeAfNA0AAAKJZR4qKA881.jpg

取L=4mH。

④计算变压器原边电流峰值

wKgaomQw5IiABoT9AAAZ5ca59h8613.jpg

⑤最大导通时间

wKgZomQw5IeAFF_4AAASK8Z-cGw349.jpg

⑥确定变压器变比并计算反激时间

由于变压器工作在完全能量传递方式,其激磁和去磁的伏秒积相等,故有:

wKgZomQw5IiAMKl4AAAZGfOBERs318.jpg

假设K=13,则:

wKgaomQw5IeALJmjAAAIFZEYbKk960.jpg

⑦校验

wKgaomQw5IeAQRQ6AAAQ5MQ16xY522.jpg

满足能量传递方式的要求。

变压器绕组电流的计算及线径、匝数的选取

①计算变压器原边电流有效值

wKgaomQw5IeACDTgAAAkraFIO34367.jpg

②变压器原边绕组线径的选取

取导线的电流密度为24A/mm ,则线径:

wKgaomQw5IeAC_USAAAWBvHFrrY604.jpg

实际选取0.5mm。

③计算副边绕组电流峰值

副边绕组电流与负载电流波形如下:

wKgZomQw5IeAUH3KAAANPQZmum0093.jpg

在电路稳定工作时,流过副边绕组滤波电容的平均电流为零,因此有副边绕组电流的平均值等于负载电流,即:

poYBAGQxCVKASqllAAAW8jwO14o193.png

第一路:

poYBAGQxCVmAZ2j2AAAUDPMVHkw508.png

第二路:

poYBAGQxCWGABAJ-AAASXtxWyOQ692.png

第三路:

poYBAGQxCWeAKBvLAAAS_zXOvI4899.png

④计算副边绕组电流有效值

pYYBAGQxCW6AJ7GgAAAaw5Ir6Gw870.png

第一路:

IS1=0.462*6.88=3.12A

第二路:

IS2=0.462*0.41=0.19A

第三路:

IS3=0.462*1.3=0.6A

⑤副边绕组线径的选取

按计算所需导线直径时,应考虑趋肤效应的影响,当直径大于两倍穿透深度时,应尽可能采用多股导线并绕。当f=40kHz时,圆铜导线的穿透深度为0.3304mm,所以这里采用多股导线并绕,取导线的电流密度为24A/mm ,则线径:

wKgZomQw5IiAVD7VAAAFygP1pLg983.jpg

第一路:

wKgaomQw5IeAAvILAAAUNC3OMg8293.jpg

实选0.75*4mm

第二路:

wKgZomQw5IiACMprAAAVAAfzUw0002.jpg

实选0.5mm

第三路:

wKgaomQw5IeABBt1AAATe5A2XPI522.jpg

实选0.75mm

⑥变压器原边匝数计算

wKgaomQw5IeAHIOOAAAaP9wTOfY360.jpg

实选130匝。

其中:

ΔB——磁感应强度(单位:T),与磁芯材料、绕组电流大小和匝数有关

A——磁芯截面积(单位:2 mm),这里选EC35磁芯。

此处Ton的单位用us。

⑦变压器副边主反馈绕组匝数计算

第一路:

wKgZomQw5IeAJzVIAAAICRStaVk631.jpg

⑧变压器副边其它绕组匝数计算

wKgZomQw5IeAXMw2AAAGnTYw4R8993.jpg

第二路:

wKgZomQw5IeAW__tAAAG-jFSIsY124.jpg

第三路:

wKgZomQw5IeAV1BZAAAJKnqxZJM454.jpg

实取15匝。

副边输出滤波电容纹波电流有效值计算和电容选取

①按输出纹波电压的要求计算最小输出电容

当电路稳定工作时,对任意负载均有:

wKgZomQw5IeAG4tKAAAH0iG_qmM480.jpg

其中:C为电容容量,Rc为电容阻抗。

各路输出纹波电压根据要求按1%计算,得各路电容应满足的必要条件:

第一路:

wKgaomQw5IeAb6FnAAAlHThrc5A916.jpg

第二路:

wKgaomQw5IiAUNwfAAAkySBbZQ4811.jpg

第三路:

wKgaomQw5IeAVYjJAAAk59FMe3c053.jpg

②副边输出滤波电容纹波电流有效值计算

wKgZomQw5IeAa7biAAAKTQZd-jY900.jpg

第一路:

wKgZomQw5IeAGhtAAAASe_WYjbI976.jpg

第二路:

wKgaomQw5IeASmygAAATqcfnIqI002.jpg

第三路:

wKgaomQw5IeAP2gkAAAUdmtVz1g307.jpg

③滤波电容的选取

综合考虑以上3个条件:容量、阻抗、纹波电流的大小,选取以下电容:

第1路:

3*1000uF/35V,其并联后的阻抗小于0.019Ω,允许纹波电流大于5.19A;

第2路:

560uF/35V,其阻抗小于0.082Ω,允许纹波电流大于1.16A;

第3路:

1000uF/35V,其阻抗小于0.058Ω,允许纹波电流大于1.71A。

副边整流二极管的选取

①二极管反向耐压

wKgZomQw5IeAQ7lwAAAOCWfPYbo338.jpg

第一路:

wKgZomQw5IeAI5QtAAASU3btHLo941.jpg

第二路:

wKgZomQw5IeAeS-RAAASUWSvh28271.jpg

第三路:

wKgaomQw5IiAAC2QAAAUD6nJ_8s630.jpg

考滤开关电源上电时的冲击电压,以上各管均选反压200V以上的二极管。

②二极管正向电流及损耗

wKgZomQw5IeAY2JiAAAHvBFhKYA577.jpg

第一路:

wKgaomQw5IeAaUNVAAAV25fBfXg506.jpg

第二路:

wKgZomQw5IeAco8lAAAWlcqQVtU192.jpg

第三路:

wKgaomQw5IeATCDAAAAYkNLVoP8953.jpg

整流二极管截止时,承受的反向电压值

wKgZomQw5IeADLe3AAAEtKUuHEM849.jpg

选取整流二极管要保证反向耐压值URM>UDP,整流二极管电流有效值应满足IF>Po/Uo=Io。

此外,为减小输出纹波和噪声,变压器副边输出整流二极管应选快恢复二极管,且负载较大者应在副边整流二极管两端并联阻容吸收电路,注意吸收电容的耐压值要高,这里取R=100Ω,瓷片电容C=470pF,耐压1kV。

开关电源原边电路参数的计算

原边电路图如下:

wKgaomQw5IiACYMOAABg5FfERU8924.jpg

①驱动电阻Rdrv的选取

这里Vcc>15V,当开关管Q的G极电压达10V时,开关管能完全开通。为了使开关管的开通和关断损耗最小,则应使:

wKgaomQw5IeAV3UTAAAiIxRemnQ975.jpg

取Rdrv=33.3Ω,其损耗为

P=fCiVCC²=41*0.99*15²/10³=9.1mW

其中

Rdrv——开关管门极驱动电阻

Ci——开关管Q的输入电容

tr,tf——开关管开通和关断时间

②电流采样电阻Rs的选取

由于UC2844的第3脚电平大于等于1V时,其第6脚输出低电平,则为了使电源能输出最大功率,选:

Rs=1/Ip=1/0.76=1.32Ω

实际选用1Ω/1W。

③电流环滤波时间常数R1C1的确定

本电路主要是为了滤除门极驱动电流对UC2844第3脚电平的影响,一般门极驱动电流影响UC2844的电平小于0.1V能满足要求。故有:

wKgZomQw5IeADLIrAAAS0uORtVg392.jpg

解得

R1C1≥193.8ns

取:R1=1kΩ,C1=470pF

④吸收电路参数RCD的计算

a.电容C的选取

吸收电容的容量计算:

设原边电感的漏感储能全部由电容转化为吸收电容的储能,则:

wKgaomQw5IeAI-gbAAAUfMU7OdY906.jpg

其中:

Ls——原边电感漏感

C——吸收电容容量

Uc——吸收电容电压

一般要求ΔUc<50V,Ls<120uH,则C可选:

wKgZomQw5IeAPTmaAAAn7dox-xc382.jpg

吸收电容耐压的计算,电容耐压的选取:

Vc>13*15+50=245V

我们这里取600V。

b.吸收电阻的选取

这里我们选取:R=51K/2W*2,其损耗为

P=(13*15)²/(102*1000)=0.373W

c.二极管D的选取:

反向耐压要求

VR>800+13*15+50=1045V

由于变压器电感的电流峰值才0.76A,故选:D=1A/1400V可满足要求。

⑤开关管Q的选取

直流母线电压短时可能达到850V, 所以MOS管截止时,集射极间承受的最大峰值电压

UCEP=Ui+nUo=850V+210=1060V

MOS管最大电流为

Ip+IRCD=0.95+0.265=1.215A

式中,IRCD为MOS管导通时RCD吸收电路产生的电流,可由下面吸收电路计算得到。

考虑到启动瞬间MOS管电压比正常工作时要高,所以选择1500V的MOS管,其损耗为

wKgZomQw5IiAcUiWAAAY7xe0wgo850.jpg

式中,

Co.Q——MOS管输出电容,125pF

Ron.Q——MOS管导通电阻,10Ω

tf——MOS关断时的电流下降时间,60ns

⑥启动电阻R2、R3的选取

依UC2844资料,其最大静态工作电流为1mA,则应使:

wKgaomQw5IeAQxzaAAAW6kwmzxQ083.jpg

wKgZomQw5IeAOJuTAAAWUA_v8d4255.jpg

选取:R2=100K/2W*2+51K/2W*2;R3=100KΩ。

⑦启动电容C2的选取

a.副边输出电压上升时间tro的计算:

由于在副边电压上升的过程中,电压环不起作用,仅有电流环起作用,电源进入限流工作模式,按变压器的传输效率为0.95计算,有:

wKgaomQw5IeAT-EvAABKtRNiTBI139.jpg

b.启动电容C2的估算:

UC2844资料表明,当电源电压低于10V,UC2844停止工作,其工作时最大工作电流为17mA,考滤其外围电路的影响,取20mA。为了确保电源能一次性启动完成,同时留1V裕量,应使:

(16-11)C2≥20tro

C2=4tro=36uF

暂取C2=100uF。

⑧打嗝电阻R4的估算

wKgZomQw5IeAK6VpAAAXPlqWvbs797.jpg

wKgZomQw5IeAYctoAAAWcOAWZXc481.jpg

R4=133Ω

根据经验,我们这里暂取R4=50Ω。

⑨振荡电阻电容的选取

由于振荡频率为输出开关频率的两倍,根据UC2844资料,选:

RT=4.7KΩ,CT=4.7nF

实际设计中,这两个参数还需要根据实验进行调整。

⑩开关管Q的功耗计算

wKgZomQw5IiASO3mAAA9Fp9ZNZU054.jpg

电压控制环参数计算

电压反馈电路如下:

wKgZomQw5IeADGk-AAASWz2kx9w918.jpg

副边电压变化速度不快,故可采用低速光耦,适用的光耦有:TLP521、PS2501、PC817等,这里采用PS2501,其最小电流传输比为80%。为了能反映反馈电压的变化,光

耦应工作于线性区,所以当反馈电压为+15V时,设计光耦副边电流为1mA,其原边电流IF=1.25mA,原边压降UD=1.2V,I431A≈2mA。此处TL431A作比较器用, 即由R1、R2确定的REF端电压U8与TL431A内部的2.5V基准电压进行比较,因此阴极电位由外部电路决定。当反馈电压为+15V时,U8=2.5V,设定阴极电位U阴极为11V(U阴极可以设定的范围为+5V~+12V,若设定值太大,管子功耗将大大增加)。当反馈电压大于+15V时,U8增大,U阴极减小,IF增大,UC2844调节副边电压降低。同理可分析反馈电压小于+15V的情况。

wKgaomQw5IeAdkJ-AAA-fvhnLrU358.jpg

①分压电阻R1、R2的选取

忽略TL431的Iref(约4uA)的影响,则有:

wKgaomQw5IeAQtLYAAAJrpAP4U0686.jpg

选:R1=10KΩ,R2=2KΩ

②电阻R7的选取

根据UC2844的资料和前面计算结果,得:

wKgZomQw5IeAEIYjAAAGJ-fz92U053.jpg

得VP1=3.68V

为了不使光耦原边工作电流过小,取R7=1KΩ,此时流过光耦副边的电流为:

(5-3.68)/1+1=2.32mA

根据PS2501资料查得此时光耦原边电流约1.55mA,压降

约1V。

③电阻R4、R5的选取

为了使电源有较好的电压调节范围,设计时选TL431第1脚的工作电压为10V左右。

R4(1.55+1/R5)+1=15-10=5V,取R4=R5,得R4=R5=2.6KΩ,实取R4=R5=2KΩ。此时TL431第1脚的工作电压为11V。

④比例电阻R3和积分电容C2的选取

此电源设计时其开关周期为24.4us,为使电源有较好的稳定度,选取R3C2约为开关周期的4~5倍,即

24.4*4=97.6

选R3=10KΩ,C2=10nF

⑤微分电阻R6和微分电容C1的选取取

为使电源有较快的动态响应速度(小于1周期),同时又不致于过于灵敏,选:

R6C1=20us,取R6=2KΩ,C1=10nF。

以上的计算只是初步的,具体还需要根据实验进行调整!

电源输出过压保护电路

原理图如下:

wKgaomQw5IiAfSQxAACcTnvpd68597.jpg

电路的工作电源为UC2844的电源,电路的保护输出端为Q3的集电极。电路在上电或正常工作时,稳压二极管DZ1截止,Q2由于其基极下拉电阻R5而处于截止状态,Q1由于其基极上拉电阻R1也处于截止状态;同时Q1和DZ1的漏电流在R5上的压降不致Q2导通,Q2的漏电流在R1的压降不致Q1导通,由于Q1、Q2的正反馈作用,Q3处于截止状态。当电源输出过压时,UC2844电源的电压也随之增大,当大于约18.6V时,DZ1、Q2、Q3导通,Q3导通使开关电源停止工作,Q2导通使Q1导通,同时由于Q1、Q2的正反馈作用,使其处于保持导通状态,直至UC2844的电源电压低于某值,流过Q1、Q2的电流小于其保持电流,电路才恢复截止状态。但由于UC2844的电源有300KΩ的启动电阻与开关电源的输入相连,使流过Q1、Q2的电流大于其保持电路,因此电路有可能会一直处于保护状态,直至变频器掉电。但若电路参数设计得当,电路则工作于过压打嗝保护状态。

①器件功能

稳压二极管DZ1,过压设定值;

电阻R2~R4,三极管Q1~Q3的基极限流电阻;

电阻R1,三极管Q1的基极上拉电阻;

电阻R5,三菜管Q2的基极下拉电阻;

三极管Q1、Q2,与周围电阻构成触发保护电路;

电容C1、C2,滤波电容,提高电路的抗干扰性能。

②参数计算

a.选DZ1为18V的稳压管,选Q1为PMBT4403的三极管,Q2、Q3为PMBT4401的三极管;根据Q1~Q3的资料,取其电流放大倍数均为30。

b.取R2=R3=R4=R5,同时能使电路在UC2844电源电压低于5V时自动解除封锁,则:

wKgaomQw5IeAIw9iAAAF2eEtTUE567.jpg

得:R2=11.1KΩ,取R2=R3=R4=R5=10KΩ。

c.为使电路能自动解除封锁,则R1应满足:

wKgZomQw5IeADL8PAAAGnnI27dI223.jpg

得R1<1.3KΩ,取R1=1KΩ。

d.由于本电路要具有一定的抗干扰性能,同时本电路对过压保护的速度要求不高,电容C1、C2选常用的0.1uF电容。

04开环DC/DC开关电源

在大功率机型中,每个IGBT的驱动需要提供一个正向开通电源和一个反向关断电源,6路IGBT需要6组电源,这些电源一般通过DC/DC变换得到。由于该电源的原边电压来自前级的AC/DC变换,电压值一般比较稳定(12V、15V或者24V),因此这里的DC/DC变换采用开环控制即可。

如下图:

wKgZomQw5IeACIugAAAkx-DFZx0855.jpg

通过合理设定NE555的开关频率和占空比和脉冲变压器的变比,可以得到稳定输出的直流电压,无需反馈。由于是低压DC/DC变换,开关管使用的是低压高速mos管,NE555的开关频率一般可以到100k,这也提高了脉冲变压器的转化效率。


文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    Transformer for e-mobility 我们还将展示反激式辅助变压器(多输出耦合和隔离管理)、用于晶体管控制的栅极驱动变压器(一种特殊技术,满足爬电距离要求)、用于......
    扼流器均由铁粉、高磁导铁氧体、纳米晶铁氧体、低损耗高温稳定铁氧体铁芯、绝缘立茨线、侧平绕组等专用组件组成。 用于电动汽车的信号变压器 Signal Transformer for e-mobility 我们还将展示反激式辅助变压器......
    航天等领域。   一、IGBT应用在轨道交通中:   IGBT器件已成为轨道交通车辆牵引变流器和各种辅助变流器的主流电力电子器件。交流传动技术是现代轨道交通的核心技术之一,在交流传动系统中牵引变流器是关键部件,而......
    缩小铁芯体积,其导磁性有方向性,沿滚动方向具有良好的导磁性。因此,冷轧硅钢板通常卷成椭圆形铁芯,即我们常见的R型铁芯。由于R型铁芯没有切面,导磁性能更好,所以效率更高。 变压器的绕组电阻由原侧绕组电阻和辅助......
    如何使用变压器油色谱进样辅助装置;0 引言 利用变压器油色谱在线监测装置监测变压器的运行状态,是目前在线监测变压器内潜伏性故障最为有效的手段。随着变压器油色谱在线监测装置的快速发展,其功......
    电源,TI就提供了包括隔离式辅助电源、模块以及电源转换器,包括高密度集成式 FET 转换器和集成变压器模块等各类产品,可减少电源 BOM 数量并简化隔离式直流/直流设计。 德州仪器DC/DC隔离......
    与负载之间的控制可以实现更加精确和有目的地耦合。 参考设计采用专利隔离技术用于隔离反馈。这项专利隔离技术称为Inde-Flux变压器技术,已向Würth Elektronik eiSos公司授权。Inde-Flux变压器......
    与负载之间的控制可以实现更加精确和有目的地耦合。 参考设计采用专利隔离技术用于隔离反馈。这项专利隔离技术称为Inde-Flux变压器技术,已向Würth Elektronik eiSos公司授权。Inde-Flux变压器......
    过不了。 12、将输入 BUCK 电容改为低内阻的电容。 13、对于无 Y-CAP 电源,绕制变压器时先绕初级,再绕辅助绕组并将辅助绕组密绕靠一边,后绕......
    驱动器基于成熟的SCALE-2技术,集成度更高、尺寸更小、功能更强、系统可靠性更高,是轨道交通辅助变换器、电动汽车非车载型充电装置和电网静止同步补偿器(STATCOM)稳压器等应用的理想之选。Power......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>