一、RTC简介
RTC(Real Time Clock)实时时钟,它是一个独立的定时器。RTC模块拥有一组连续计数的计数器,在相应软件配置下,可提供时钟日历的功能。修改计数器的值可以重新设置系统当前的时间和日期。
RTC模块和时钟配置都是在后备区域,无论单片机处于何种状态,只要保证后备区正常供电,RTC就会一直工作。
二、STM32的RTC
2.1 主要特性
• 可编程的预分频系数 :分频系数最高为2^20
• 32位的可编程计数器 ,可用于较长时间段的测量
• 可以选择以下三种RTC的时钟源 ─ HSE时钟除以128 ─ LSE振荡器时钟 ─ LSI振荡器时钟
-
• 3个专门的可屏蔽中断 ─ 闹钟中断,用来产生一个软件可编程的闹钟中断 ─ 秒中断,用来产生一个可编程的周期性中断信号(最长可达1秒) ─ 溢出中断,指示内部可编程计数器溢出并回转为0的状态
22.2 RTC框图介绍
RTC框图
• RTCCLK通常选择低功耗32.768kHz外部晶振(LSE)
• RTC预分频器通常设置为32768,LES时钟经过RTC预分频器,输入频率变为1Hz,也就是1秒
• RTC_CNT输入时钟为1Hz时,1s加1次
-
• RTC_ALR是用来做闹钟的,RTC_CNT的值会与RTC_ALR的值进行比较,二者相等时,会产生闹钟中断
三、访问后备区域步骤
STM32系统复位之后,对后备寄存器和RTC的访问被禁止 ,这是为了防止对后备区域(BKP)的意外写操作。执行以下操作,可以访问后备区域寄存器
• 设置寄存器RCC_APB1ENR的PWREN和BKPEN位,使能电源和后备接口时钟
• 设置寄存器PWR_CR的DBP位,使能对后备寄存器和RTC的访问
完成上面的设置之后,就可以操作后备寄存器。第一次通过APB1总线访问RTC时,需要等待APB1和RTC同步,确保读取出来的RTC的寄存器值是正确的。如果同步之后,一直没有关闭APB1和RTC外设接口,就不需要再同步了。
如果内核需要对RTC寄存器写入数据,在内核发送指令后,RTC会在3个RTCCLK时钟之后,开始写入数据。每次写入时,必须要检查RTC关闭操作标志位RTOFF是否置1来判断是否写操作完成。
四、RTC配置步骤
• 使能电源时钟和后备域时钟,开启RTC后备寄存器写访问
• 复位备份区域,开启外部低速振荡器(LSE)
• 选择RTC时钟,并使能
• 设置RTC的分频系数,配置RTC时钟
• 更新配置,设置RTC中断分组
• 编写RTC中断服务函数
五、RTC程序配置
55.1 RTC结构体定义
// RTC结构体
typedef struct
{
// 时分秒
u8 hour;
u8 min;
u8 sec;
// 年月日周
u16 w_year;
u8 w_month;
u8 w_date;
u8 week;
}_calendar;
5.2 RTC初始化函数
/*
*==============================================================================
*函数名称:RTC_Init
*函数功能:初始化RTC
*输入参数:无
*返回值:0:成功;1:失败
*备 注:无
*==============================================================================
*/
u8 RTC_Init (void)
{
u8 temp=0; // 超时监控变量
// 结构体定义
NVIC_InitTypeDef NVIC_InitStructure;
// 使能PWR和BKP外设时钟
RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR | RCC_APB1Periph_BKP, ENABLE);
PWR_BackupAccessCmd(ENABLE); // 使能后备寄存器访问
// 检测是否是第一次配置RTC
// 配置时会想RTC寄存器写入0xA0A0,如果读出的数据不是0xA0A0,认为是第一次配置RTC
if (BKP_ReadBackupRegister(BKP_DR1) != 0xA0A0)
{
BKP_DeInit(); // 复位备份区域
RCC_LSEConfig(RCC_LSE_ON); // 设置外部低速晶振(LSE),使用外设低速晶振
// 等待低速晶振就绪
while (RCC_GetFlagStatus(RCC_FLAG_LSERDY) == RESET&&temp< 250)
{
temp++;
delay_ms(10);
}
// 初始化时钟失败,晶振有问题
if(temp >=250)
{
return 1;
}
RCC_RTCCLKConfig(RCC_RTCCLKSource_LSE); // 设置RTC时钟(RTCCLK),选择LSE作为RTC时钟
RCC_RTCCLKCmd(ENABLE); // 使能RTC时钟
RTC_WaitForLastTask(); // 等待最近一次对RTC寄存器的写操作完成
RTC_WaitForSynchro(); // 等待RTC寄存器同步
RTC_ITConfig(RTC_IT_SEC, ENABLE); // 使能RTC秒中断
RTC_WaitForLastTask(); // 等待最近一次对RTC寄存器的写操作完成
RTC_EnterConfigMode(); // 允许配置
RTC_SetPrescaler(32767); // 设置RTC预分频的值
RTC_WaitForLastTask(); // 等待最近一次对RTC寄存器的写操作完成
RTC_Set_Date(2023,6,26,11,15,00); // 设置初始时间
RTC_ExitConfigMode(); // 退出配置模式
BKP_WriteBackupRegister(BKP_DR1, 0XA0A0); // 向指定的后备寄存器中写入用户程序数据
}
// 系统继续计时
else
{
RTC_WaitForSynchro(); // 等待最近一次对RTC寄存器的写操作完成
RTC_ITConfig(RTC_IT_SEC, ENABLE); // 使能RTC秒中断
RTC_WaitForLastTask(); // 等待最近一次对RTC寄存器的写操作完成
}
// 配置RTC中断分组
NVIC_InitStructure.NVIC_IRQChannel = RTC_IRQn; // RTC全局中断
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; // 先占优先级1位,从优先级3位
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; // 先占优先级0位,从优先级4位
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; // 使能该通道中断
NVIC_Init(&NVIC_InitStructure); // 根据NVIC_InitStruct中指定的参数初始化外设NVIC寄存器
RTC_Get_CurDate(); // 获取当前时间
return 0; // 配置成功
}
初始化函数使用时,可以用while等待初始化成功,但是需要增加一个超时检测,这里简单给出一个写法,如果1s内,RTC没有初始化成功,直接跳过
u32 tempVar = 0; // 初始化RTC时的超时计数变量
while (RTC_Init() && tempVar < 100) // RTC初始化
{
delay_ms (10);
// 10ms自加1
tempVar = tempVar + 1;
}
5.3 设置年月日,时分秒
/*
*==============================================================================
*函数名称:RTC_Set_Date
*函数功能:设置RTC的年月日,时分秒
*输入参数:无
*返回值:0:成功;1:失败
*备 注:时间范围为1970年到2099年,可修改
*==============================================================================
*/
u8 RTC_Set_Date (u16 syear,u8 smon,u8 sday,u8 hour,u8 min,u8 sec)
{
u16 t;
u32 seccount=0;
// 判断是否为合法年份
if(syear < 1970 || syear > 2099)
{
return 1;
}
for(t = 1970;t < syear;t ++) // 把所有年份的秒钟相加
{
// 闰年的秒钟数
if(Is_Leap_Year(t))
{
seccount += 31622400;
}
// 平年的秒钟数
else
{
seccount += 31536000;
}
}
smon -= 1;
for(t = 0;t < smon;t ++) // 把前面月份的秒钟数相加
{
seccount += (u32)mon_table[t] * 86400; // 月份秒钟数相加
// 闰年2月份增加一天的秒钟数
if(Is_Leap_Year(syear) && t == 1)
{
seccount += 86400;
}
}
seccount += (u32)(sday-1) * 86400; // 把前面日期的秒钟数相加
seccount += (u32)hour * 3600; // 小时秒钟数
seccount += (u32)min*60; // 分钟秒钟数
seccount += sec; // 最后的秒钟加上去
RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR | RCC_APB1Periph_BKP, ENABLE); // 使能PWR和BKP外设时钟
PWR_BackupAccessCmd(ENABLE); // 使能RTC和后备寄存器访问
RTC_SetCounter(seccount); // 设置RTC计数器的值
RTC_WaitForLastTask(); // 等待最近一次对RTC寄存器的写操作完成
return 0;
}
5.4 判断闰年函数
/*
*==============================================================================
*函数名称:Is_Leap_Year
*函数功能:判断输入年份是否为闰年
*输入参数:无
*返回值:0:不是闰年;1:是闰年
*备 注:四年一闰;百年不闰,四百年再闰
*==============================================================================
*/
u8 Is_Leap_Year (u16 year)
{
// 是否能被4整除
if(year % 4 == 0)
{
// 是否能被100整除
if(year % 100 == 0)
{
// 如果以00结尾,还要能被400整除
if(year % 400 == 0)
{
return 1;
}
// 是100的倍数,但是不是400的倍数
else
{
return 0;
}
}
// 是4的倍数,不是100的倍数
else
{
return 1;
}
}
// 不是4的倍数
else
{
return 0;
}
}
5.5 获取当前年月日,时分秒
/*
*==============================================================================
*函数名称:RTC_Get_CurDate
*函数功能:获取当前年月日,时分秒
*输入参数:无
*返回值:0:成功;1:失败
*备 注:无
*==============================================================================
*/
u8 RTC_Get_CurDate (void)
{
// 存储上一次的总天数值,用来监测时间变化是否超过一天
static u16 daycnt = 0;
u32 timecount = 0;
// 临时计算变量
u32 temp = 0;
u16 temp1 = 0;
timecount = RTC_GetCounter(); // 获取当前总秒数
temp = timecount / 86400; // 得到总天数
// 超过一天了