STM32 GPIO工作原理详解

发布时间:2023-03-20  

1.STM32引脚说明

GPIO是通用输入/输出端口的简称,是STM32可控制的引脚。GPIO的引脚与外部硬件设备连接,可实现与外部通讯、控制外部硬件或者采集外部硬件数据的功能。

以STM32F103ZET6芯片为例子,该芯片共有144脚芯片,包括7个通用目的的输入/输出口(GPIO)组,分别为GPIOA、GPIOB、GPIOC、GPIOD、GPIOE、GPIOF、GPIOG,同时每组GPIO口组有16个GPIO口。通常简略称为PAx、PBx、PCx、PDx、PEx、PFx、PGx,其中x为0-15。

STM32的大部分引脚除了当GPIO使用之外,还可以复用位外设功能引脚(比如串口),这部分在STM32端口复用和重映射(AFIO辅助功能时钟) 中有详细的介绍。

2.GPIO基本结构

每个GPIO内部都有这样的一个电路结构,这个结构在本文下面会具体介绍。

电路图说明

保护二极管:IO引脚上下两边两个二极管用于防止引脚外部过高、过低的电压输入。当引脚电压高于VDD时,上方的二极管导通;当引脚电压低于VSS时,下方的二极管导通,防止不正常电压引入芯片导致芯片烧毁。但是尽管如此,还是不能直接外接大功率器件,须加大功率及隔离电路驱动,防止烧坏芯片或者外接器件无法正常工作。

P-MOS管和N-MOS管:由P-MOS管和N-MOS管组成的单元电路使得GPIO具有“推挽输出”和“开漏输出”的模式。这里的电路会在下面很详细地分析到。

TTL肖特基触发器:信号经过触发器后,模拟信号转化为0和1的数字信号。但是,当GPIO引脚作为ADC采集电压的输入通道时,用其“模拟输入”功能,此时信号不再经过触发器进行TTL电平转换。ADC外设要采集到的原始的模拟信号。

这里需要注意的是,在查看《STM32中文参考手册V10》中的GPIO的表格时,会看到有“FT”一列,这代表着这个GPIO口时兼容3.3V和5V的;如果没有标注“FT”,就代表着不兼容5V。

3.STM32的GPIO工作方式

GPIO支持4种输入模式:

  • 浮空输入(GPIO_Mode_IN_FLOATING)

  • 上拉输入(GPIO_Mode_IPU)

  • 下拉输入(GPIO_Mode_IPD)

  • 模拟输入(GPIO_Mode_AIN)

GPIO支持4种输出模式:

  • 开漏输出(GPIO_Mode_Out_OD)

  • 开漏复用输出(GPIO_Mode_AF_OD)

  • 推挽输出(GPIO_Mode_Out_PP)

  • 推挽复用输出(GPIO_Mode_AF_PP)

同时,GPIO还支持三种最大翻转速度(2MHz、10MHz、50MHz)。
每个I/O口可以自由编程,但I/O口寄存器必须按32位字被访问。

浮空输入模式

  • 浮空输入模式下,I/O端口的电平信号直接进入输入数据寄存器。也就是说,I/O的电平状态是不确定的,完全由外部输入决定;如果在该引脚悬空(在无信号输入)的情况下,读取该端口的电平是不确定的。

上拉输入模式

  • 上拉输入模式下,I/O端口的电平信号直接进入输入数据寄存器。但是在I/O端口悬空(在无信号输入)的情况下,输入端的电平可以保持在高电平;并且在I/O端口输入为低电平的时候,输入端的电平也还是低电平。

下拉输入模式

  • 下拉输入模式下,I/O端口的电平信号直接进入输入数据寄存器。但是在I/O端口悬空(在无信号输入)的情况下,输入端的电平可以保持在低电平;并且在I/O端口输入为高电平的时候,输入端的电平也还是高电平

模拟输入模式

  • 模拟输入模式下,I/O端口的模拟信号(电压信号,而非电平信号)直接模拟输入到片上外设模块,比如ADC模块等等。

开漏输出模式

  • 开漏输出模式下,通过设置位设置/清除寄存器或者输出数据寄存器的值,途经N-MOS管,最终输出到I/O端口。这里要注意N-MOS管,当设置输出的值为高电平的时候,N-MOS管处于关闭状态,此时I/O端口的电平就不会由输出的高低电平决定,而是由I/O端口外部的上拉或者下拉决定;当设置输出的值为低电平的时候,N-MOS管处于开启状态,此时I/O端口的电平就是低电平。同时,I/O端口的电平也可以通过输入电路进行读取;注意,I/O端口的电平不一定是输出的电平。

开漏复用输出模式

  • 开漏复用输出模式,与开漏输出模式很是类似。只是输出的高低电平的来源,不是让CPU直接写输出数据寄存器,取而代之利用片上外设模块的复用功能输出来决定的。

什么是推挽结构和推挽电路?

  • 推挽结构一般是指两个参数相同的三极管或MOS管分别受两互补信号的控制,总是在一个三极管或MOS管导通的时候另一个截止。高低电平由输出电平决定。

  • 推挽电路是两个参数相同的三极管或MOSFET,以推挽方式存在于电路中,各负责正负半周的波形放大任务。电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小、效率高。输出既可以向负载灌电流,也可以从负载抽取电流。推拉式输出级既提高电路的负载能力,又提高开关速度。

开漏输出和推挽输出的区别?

  • 开漏输出:只可以输出强低电平,高电平得靠外部电阻拉高。输出端相当于三极管的集电极。适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内);

  • 推挽输出:可以输出强高、低电平,连接数字器件。

  • 关于推挽输出和开漏输出,最后用一幅最简单的图形来概括:

  • 该图中左边的便是推挽输出模式,其中比较器输出高电平时下面的PNP三极管截止,而上面NPN三极管导通,输出电平VS+;当比较器输出低电平时则恰恰相反,PNP三极管导通,输出和地相连,为低电平。

  • 右边的则可以理解为开漏输出形式,需要接上拉。

4.在STM32中选用怎样选择I/O模式?

  • 浮空输入(GPIO_Mode_IN_FLOATING) ——浮空输入,可以做KEY识别,RX1

  • 上拉输入(GPIO_Mode_IPU)——IO内部上拉电阻输入

  • 下拉输入(GPIO_Mode_IPD)—— IO内部下拉电阻输入

  • 模拟输入(GPIO_Mode_AIN) ——应用ADC模拟输入,或者低功耗下省电

  • 开漏输出(GPIO_Mode_Out_OD)——IO输出0接GND,IO输出1,悬空,需要外接上拉电阻,才能实现输出高电平。当输出为1时,IO口的状态由上拉电阻拉高电平,但由于是开漏输出模式,这样IO口也就可以由外部电路改变为低电平或不变。可以读IO输入电平变化,实现C51的IO双向功能

  • 推挽输出(GPIO_Mode_Out_PP) ——IO输出0-接GND, IO输出1 -接VCC,读输入值是未知的

  • 推挽复用输出(GPIO_Mode_AF_PP) ——片内外设功能(I2C的SCL、SDA)

  • 开漏复用输出(GPIO_Mode_AF_OD)——片内外设功能(TX1、MOSI、MISO、SCK、SS)


文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    也会造成集成运算放大器本身功耗过大,温升过高,影响电路的输出精度,所以采用小功率三极管T1推动大功率达林顿管工作。采样电阻接在激光器下端,采样信号经过由U2组成的同相比例放大环节放大后再接回到U1的反......
    经典继电器驱动电路方案:单片机IO端口、三极管、达林顿管及嵌套连接; 文章目录 一:继电器原理......
    增益近似等于组成它的两个三极管电流增益的乘积。达林顿管中第一个三极管起工作在射极跟随器工作模式,对输入电流进行放大,提高了输入阻抗,这使得达林顿管可以被普通的TTL,CMOS门电......
    可以通过单片机来控制蜂鸣器,是这么个道道。 ULN2003 看不懂芯片原理图 待续  以上是我整理的资料,达林顿管为什么有反向的作用还是不明白?达林顿管不是放大电流的吗?为什么有反向的作用?续流......
    让蜂鸣器发声(2024-08-16)
    可以通过单片机来控制蜂鸣器,是这么个道道。   ULN2003 看不懂芯片原理图 待续    以上是我整理的资料,达林顿管为什么有反向的作用还是不明白?达林顿管不是放大电流的吗?为什么有反向的作用?续流......
    还搞不懂TIP147是什么管子?看这一文,引脚图+参数+工作原理;我是小七,干货满满。大家不要错过,建议收藏,错过就不一定找得到了,内容仅供参考,图片记得放大,观看。本文引用地址:如果......
    号输入端。 2.4 ULN2003工作原理驱动应用电路 ULN2003是高耐压、大电流复合晶体管阵列,由七个硅NPN 复合晶体管组成,每一对达林顿都串联一个2.7K 的基极电阻,在5V 的工作......
    测量中、小功率三极管极间电阻那样,使用万用表的R×1k挡测量,必然测得的电阻值很小,好像极间短路一样,所以通常使用R×10或R×1挡检测大功率三极管。 (3)普通达林顿管的检测 用万用表对普通达林顿管......
    80C51学习 蜂鸣器;/* 蜂鸣器分为有源和无源 其中有源是指有振荡源  ULN2003 达林顿管 输入输出反向放大 */ #include 'reg52.h' typedef......
    对D669/B649组成达林顿管结构,能消除由于信号过载引起的饱和削顶现象。当前级管接近饱和时,电流增益会迅速降低,使末级管水远不会进入饱和区,实现信号“软着陆”,避免刺耳失真。彻底取消负反馈,各级......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>