英特尔联合Mila,打造值得信赖的人工智能

发布时间:2022-09-20  

此次合作旨在以AI研究成果应对全球气候变化、鉴别致病因素,并加速药物研发

image.png

英特尔与Mila团队的成员(左起):英特尔销售开发经理Jason Gauthier;Mila合作伙伴关系部高级顾问Sophie Le Drew;英特尔行业技术专家Dan Nitta Mackay;英特尔公司副总裁兼数据中心、人工智能和云计算执行与战略总经理Kavitha Prasad;Mila创始人兼科学主任Yoshua Bengio;英特尔人工智能和云计算执行与战略副总裁Arun K. Subramaniyan;Mila合作伙伴关系部高级总监Fred Laurin;英特尔人工智能和云计算执行与战略总监Kannan Keeranam

近日,英特尔宣布与蒙特利尔学习算法研究所(Montreal Institute of Learning Algorithms,Mila)展开为期三年的战略研究与创新合作,来自双方的20余名研究人员将专注于开发先进的AI技术,用于应对气候变化、材料研发和数字生物学等领域的全球性挑战。

Mila创始人兼科学主任Yoshua Bengio表示:“面对当前全球范围内的挑战,我们必须在学术界与产业界之间推动开放科学的文化,从而加速AI应用以造福社会。此次,我们十分高兴能与英特尔展开合作,更加高效地探索用于改善碳捕获、加速药物研发以及助力未来可持续发展的新型材料。”

加速先进AI技术的研发以解决当今世界所面临的一系列极为关键且具有挑战性的问题,需要值得信赖的AI战略,以及扩展计算技术的能力。作为算力和AI领域的领军企业,英特尔和Mila均秉持以积极、强大的力量推动世界变革的理念,基于此,双方将进一步升级其于2021年启动的项目,增加合作方向并加强合作力度,从而推动成果落地。

英特尔公司副总裁兼数据中心、人工智能和云计算执行与战略总经理Kavitha Prasad表示:“要解决气候变化和新材料研发等复杂问题,需要深度的AI研究、具体领域的专业知识,以及先进的计算技术。此次与Mila的合作,将为研究人员提供关键洞察并有效推动技术创新。未来,我们也将与Mila携手,共同面对挑战,以科技之力为下一代创造一个美好的未来。”

此次深化合作将重点关注:

自动化AI驱动的新材料研发:诸如密度泛函理论等化学模拟技术的进步,为模拟复杂材料系统的重要特性提供了途径。然而,这些技术受限于它们所能建模的材料系统的复杂性,这是因为当原子数量增加时,计算成本会大幅提升。以图神经网络(GNN)为代表的AI技术,有助于在近似化学模拟时显著降低计算成本,尤其是在系统规模增加的情况下。这意味着未来有可能利用AI模拟技术来复制更复杂的材料系统,无疑也将带来巨大的应用前景。值得注意的是,如果能发现新材料,亦将有助于降低成本和碳排放量。

英特尔将与Mila携手进行科技创新,以提高原子模拟(如Open Catalyst数据集)的图神经网络性能。通过增强相关的技术管道,研究人员有望能够大规模使用原子材料数据。研究团队将创建基于学习的框架,以便在需要海量搜索的材料设计应用场景中能够进行有效查询。这些框架可以借鉴强化学习、搜索算法、生成模型以及其他机器学习算法(包括Mila开创的生成流网络)的理念。

将因果机器学习应用于气候科学:虽然基于物理学的标准气候模型可以帮助预测气候变化所带来的影响,但它们极其复杂且计算成本高昂。即使是在专用的超级计算机上,通常也需要运行几个月的时间,这降低了模拟的运行频率,也无法很好地提供精细、本地化的预测。此外,这些模型通常无法解释预测背后的推理或因果关系。基于此,英特尔与Mila希望填补这一空白,通过构建一种基于因果机器学习的新型气候模型模拟器,确定传统气候模型的高维输入数据中有哪些变量可以预测,旨在通过全面而可靠地预测气候变化的影响,在推动气候科学发展的同时为决策提供可靠的判断依据。

加速研究疾病的分子驱动因素和新药研发:新药研发是一个漫长的过程,每一种获批药物的平均成本是26亿美元。成本之所以如此高昂,是因为寻找能与特定靶标契合的小分子是一个危险且高度不确定的过程,并可能耗费超过十年的时间。而且,即便找到了一个分子,也有可能在后期失效。

英特尔和Mila的研究人员将携手合作,以更便捷地发现更好的候选药物分子。例如,预测复杂的表型——包括基于单核苷酸多态性 (SNP) 基因类型的疾病——一直是数字生物学长期以来面临的一个挑战,因为大多数表型受到整个基因组中诸多SNP的影响。因此,使用大规模人群数据,针对这类表型的所有相关SNP进行联合因果分析,是现阶段面临的主要计算挑战。精确解的搜索空间大小与SNP的数量成指数关系。在检测的SNP达到数百万个时,精确解在计算上难以处理。然而,随着高分辨率数据的可用性提升、突破性AI技术的出现以及摩尔定律推动的计算密度增长,英特尔和Mila计划开发AI技术,用于:

o 了解疾病背后的分子驱动因素,预测复杂的表型,包括基于SNP基因类型的疾病。
o 发现最有前景的药物分子。英特尔和Mila应用的全新AI技术有望显著降低成本并更快地将革命性药物推向市场。

文章来源于:ECCN    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    从大会获悉,在该活动中,北京市首个自主创新人工智能算力集群正式签约。“京西智谷”人工中心与中国联通、京能集团、滴普科技、首都在线签约,共同打造自主创新人工智能算力集群。集群将面向北京市乃至全国人工智能中......
    人工智能行业的主导地位展开。本文引用地址:根据安排,美国司法部将牵头对是否违反了反垄断法展开调查。美国联邦贸易委员会则将牵头调查开发出ChatGPT的OpenAI。并且,该委......
    ,随着新任首席执行官的上任,Inflection宣布将其重心转向向企业客户销售模型,标志着公司战略方向的重大转变。 专家表示,这项交易可能会使微软面临更多监管审查。目前美国联邦贸易委员会(FTC)已经在调查其在人工智能......
    进国内碳化硅生产,为电动汽车 (EV)、人工智能 (AI) 数据中心、电池......
    英伟达将与印尼卫星公司共建2亿美元人工智能中心;印尼通讯与信息部长 Budi Arie Setiadi 表示,英伟达和印尼电信企业Indosat Ooredoo Hutchison计划......
    部的国家,并通过了《2031年国家人工智能战略》和《阿联酋国家人工智能计划》,希望打造全球人工智能中心的地位。今年3月,阿联酋新成立的MGX人工智能基金加入了与贝莱德、微软和Global......
    %的组织已在至少一项业务职能中采用AI。这些机构认为AI的风险包括不准确(63%)、侵犯知识产权(52%)和网络安全(51%)。 在美国,消费者可能会对人工智能......
    动汽车 (EV)、人工智能 (AI) 数据中心、电池存储等清洁能源系统提供动力。 此外,Wolfspeed预计将从《芯片与科学法案》所设立的先进制造业税收抵免中获得10亿美元现金(折合人民币约71......
    目前,赋能中心已吸引包括默沙东、Oxford Nanopore Technologies、乐普医疗、波克医疗、致远慧图、英矽智能、纽洛斯等20多家国内外领先的生命健康行业企业进驻。在徐......
    微软在伦敦设立新的人工智能中心;据官网消息,当地时间4月7日,宣布旗下(Microsoft AI)将在市中心开设一个新的中心。该中心将推动开创性工作,推进最先进的语言模型及其支持基础设施,并为......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>