怎样去提高三电阻采样最大占空比呢?

发布时间:2024-08-05  

因为成本和尺寸的原因,现在的电机控制器是逐渐高度集成化,小尺寸化。霍尔电流传感器或者电流采样芯片因为其高成本,使用是很受限制的。


天价电流传感器

所以,如下图的下桥臂双电阻或者三电阻采样方式是逐渐流行起来了。考虑到采样信号是共地的,所以省去了隔离电路,加上MCU大多内置运放,所以整个电路的集成度很高。

图片

下桥臂三电阻采样

像电动自行车这类产品,为了追求极致的尺寸,哪怕会引入谐波,也会考虑使用单电阻采样。

在无感FOC 控制算法里,因为位置估算和电流环都需要用到电流反馈值,所以电流采样对整个无感FOC的性能息息相关。在采用下桥三电阻采样方案时,如果没有精确的采样相电流,电机会产生较大噪音,运行效率低,极限速度低甚至无法工作。

方法简介

下桥臂双电阻和三电阻采样,必须在对应的下桥臂开通才可以,否则该桥臂电阻上没有流过电流,采样失败。

到了高速或者弱磁区,下桥臂开通的脉宽会越来越窄。最小脉宽的宽度越大,那么采样点距离MOSFET开关噪声越远,但是最大占空比不足,导致整个电机的极限速度或者最大力矩不理想,无法充分利用直流电压。

如果最小脉宽尽量减小,最大输出电压有所提高,但是采样点离MOSFET开关点很近,容易采样到噪声导致无法工作。

传统的方法是限制 调制率 ,在三相下桥臂的中点采样触发电流采样。就是限制最大占空比,牺牲了直流电压的利用率。一般来说,以M0为例,因为ADC的采样率和转换时间不会很快,一般一个通道采样加转换,对时钟降额使用大概是1us。所以采样3个通道需要3us,那么中间零矢量的时间起码要选5us以上,如下图即T1的最小宽度。

其中 Tminwidth=Tdeadtime + Tdelay + Tadc_sample。Tdeadtime 为死区时间,Tdelay 为 IGBT/MOSFET 导通延迟时间,Tadc_sample 为 ADC 采样三通道电流所需时间。所以Tminwidth=6us。

假设开关频率20k,开关周期50us,那么最大占空比只有(50-6)/50=88%.

图片

T1代表零矢量

有些厂家的方案会略微修改一下,比如上图中T1/T2/T3,当T1

以上方法是比较稳妥,但是没有最大限度地输出有效电压,中间T1的零矢量是没有有效电压输出的。

本人提出三种方法,一种源自某半导体厂商,一种受到单电阻采样的启发想到。

方法一

设定Tminwidth = 5us的前提下,所有采样情况分析如下:

图片

在PWM右边采样

1,当T1 >= Tminwidth, 在T1的中间触发U/V/W三相采样或者脉宽相对更快的U/V采样。

2,当T1 < Tminwidth, 当T2 >= Tminwidth, 在T2的中间触发UV两相采样。此时W相没有开通,所以只能选择触发UV采样,或者仍然使能UVW采样,但是W相采样结果舍弃。

3, 当T1 < Tminwidth, 当T2 < Tminwidth, 在T3范围内触发U相采样。此时只有U相开通,所以V/W采样的结果是无效的,因为桥臂电阻并没有流过电流。那么这种情况下要么对采样到的电流作 低通滤波 ,要么V相或者W相使用上一拍采样的电流。

该方法可以把占空比开到100%。

第3种情况下,必须考虑用上一拍的电流当作本拍电流使用,或者考虑低通滤波滤掉采样的错误信号,引入相位延时。

在情况2和情况3的时候,在线修改采样触发点,当前写入寄存器,下个开关周期生效。

同时两次采样的时间间隔不再固定,那么FOC的计算时间就必须缩短了。否则第3种情况因为扇区切换,到下一开关周期切换到第1种情况,FOC的计算时间必须限制在开关周期的75%以下。根本原因,还是第3种情况下触发ADC采样太晚,导致留给FOC计算的时间不足。

优点:

1、最大占空比100%

缺点:

1、FOC计算时间受限,不能超过中断周期的75%

2、ADC必须支持在线切换采样点,延时一个开关周期生效

3、某些情况下必须用上一拍电流替代当前电流,引入相位延时。或者用低通滤波滤除噪声

方法二

方法二是在第一种方法的基础上有一些启发,主要是第2,第3种情况的优化。处理方式如下:

1,当T1 >= Tminwidth, 在T1的中间触发U/V/W三相采样或者脉宽相对更快的U/V采样。

2,当T1 < Tminwidth, 当T2 >= Tminwidth, 在T2的中点触发V相采样,在T3的中点触发U相采样。

这种方法和T2中点触发UV采样的方式相比,对T2的宽度可以更窄,因为T2整个宽度内只采样1个ADC通道。如果采样2个ADC通道,那么宽度要增大起码1us。

3, 当T1 < Tminwidth, 当T2 < Tminwidth, 把T2往右边 移动 ,移动的增量是(Tminwidth-T2)。

从而可以实现在T2范围内触发1次对V相的采样,然后在T3中点触发对U相的采样。

该方法可以把占空比开到 100% ,不用考虑用上一拍的电流当作本拍电流使用,也不用考虑低通滤波滤掉采样的错误信号。尤其不会引入相位延时。

移动T2也会存在问题,因为可能导致V相开通点超过了PWM比较值的顶点,所以当V相计算的占空比不大到时候,就不光要移动可能导致谐波,还有可能改变V相的导通宽度,同时T1还有可能往左移动。

这一类极端情况下,可能会移动VW两相的开通脉冲,同时还要改变V相的导通宽度,引入一定谐波,和单电阻比较类似了。

缺点就是采样方式和单电阻类似,在情况2和情况3的时候,一个开关周期内必须触发2次ADC采样,上个周期计算触发点写入寄存器,下个开关周期就生效。

同时两次采样的时间间隔不再固定,那么FOC的计算时间就必须缩短了。否则第3种情况因为扇区切换,到下一开关周期切换到第1种情况,FOC的计算时间必须限制在开关周期的 75% 以下。

优点:

1、最大占空比100%

2、不需要用上一拍电流替代当前电流,没有相位延时

缺点:

1、FOC计算时间受限,不能超过中断周期的75%

2、ADC必须支持在线切换采样点,延时一个开关周期生效,一个周期内触发2次ADC采样。

3、第2种情况有移相,类似单电阻采样,引入电流谐波,甚至改变导通宽度。

方法三

方法三和在传统的方法比较类似, 固定点采样 ,但是占空比在某些情况下可以达到100%。

1,当T1 >= Tminwidth, 在T1的中间触发U/V/W三相采样或者脉宽相对更快的U/V采样。

2,当T1 < Tminwidth, 当T2 >= Tminwidth, 强制T1=0, 在T2中点对UV相触发采样。

3, 当T1 < Tminwidth, 当T2 < Tminwidth, 强制T1=0, 强制T2=Tminwidth, 在T2中点对UV相触发采样。

该方法可以把占空比开到 100% ,比如强制T1=0, 就是强迫实现了100%占空比。因为T1较小的时候,如果中点固定采样,肯定会受到T1开关动作的影响。这种情况下规避开关噪声,只能强制T1是不存在的,即W相下桥不导通,一直关闭。这样子UV两相就能在足够的采样宽带下实现采样。

情况3也是类似的原因,解决了T1,当T2不够,只能给T2强制最小宽度,没有宽度就创造宽度,强制触发采样。

用考虑用上一拍的电流当作本拍电流使用,也不用考虑低通滤波滤掉采样的错误信号。尤其不会引入相位延时。固定采样点,配置也简单。

缺点就是在某些情况下,强制改变了T1和T2的宽度,虽然没有引入谐波,但是改变了目标输出电压。

因为是固定采样点,所以FOC计算时间没有特殊限制。

优点:

1、最大占空比100%

2、不需要移相,不需要在线改变采样点,对FOC计算时间没有限制。

缺点:

1、极限速度下会改变T1和T2的实际值,导致实际输出电压和目标电压存在偏差


文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    许多应用而言,这些测量通常低于10Ω。阻值的变化往往是两个触点之间发生某种形式降级的最好指示。为了评估高功率电阻器、断路器、开关、母线、电缆、连接器及其他电阻元件,通常使用大电流进行低阻测量。 大多......
    RLoad成反比。 选择具有合适 IQ 的元器件由于从以上公式5和6中有多个可变项,在选料时最好只考虑一项。选择具有低IQ的放大器是降低整体功耗的最直接策略。当然,在这个过程中有一些权衡。例如......
    中的功耗 (P=RI²)* 就无法忽略了。虽然可以尝试通过降低电阻阻值来限制功耗,但由于检测的电压也同时相应降低,检测的阻值往往会受到估值分辨率和精度的限制。 通常,电阻......
    万用表测接触器线圈好坏;一般也就测量直流电阻值,如果是小型高压线圈一般几百几千或最大几兆欧姆,对精确度要求不高,可以通过实测值跟设计值或其他没有故障的同等线圈作比较,低压线圈一般是毫欧级别的,用万用表是测不出来精确阻值的......
    大小,均匀地提高电机端电压,从而降低电机的启动电流,减少电网的电压降,减小对电网的冲击。电机转速随着电阻值的减小而平滑升高,借以维持或增加启动转矩,并为短接时不产生电流冲击准备条件。 当励......
    产生噪音的原因有哪些 怎么去除录音中的噪音;产生噪音的原因有哪些 消除噪音的最好办法往往取决于噪音的来源和具体情况。以下是一些常见的方法来减少或消除噪音: 1. 声音隔离:建立物理隔离,使用......
    应用材料公司推出全新Ioniq™ PVD系统助力解决二维微缩下布线电阻难题;2022年5月26日,加利福尼亚州圣克拉拉——应用材料公司宣布推出一种全新系统,可改进晶体管布线沉积工艺,从而大幅降低电阻......
    ,苹果MacBook Air(M2)似乎仍然存在这个问题。 此外,最近发布的苹果iPhone 15似乎也没有像以前的版本那样受到影响。 目前,对于使用有漏洞设备的用户来说,保护自己的最好办法......
    电流检测电路(2023-02-02)
    接地端时,感测电阻两端的压降会有所不同。如果其他电路以电源接地端为基准,可能会出现问题。为最大限度地避免此问题,存在交互的所有电路均应以同一接地端为基准, 降低电流感测电阻值有助于尽量减小接地漂。 如上......
    分利用所选用的变频器专用型制动单元的容量,通常制动电阻阻值的选取以接近上式计算的最小值为最经济、同时还可获得最大的制动转矩,然而这需要较大的制动电阻功率。在某些情况下,并不需要很大的制动转矩,此时比较经济的办法是选择较大的制动电阻阻值......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>