自动驾驶典型计算元素特性

发布时间:2024-03-26  

典型计算元素特性

现有的计算元素(或处理器)具有不同的特性,这影响它们处理效率。下图显示了不同计算元素的处理效率与应用程序的处理特性(例如顺序与并行)的关系图。每个计算元素都有不同的特征来提高其效率和性能。这些特性从更通用到更特定的解决方案有所不同,由这些不同/可选的特征集定义。

图片

现有处理器的计算特性

中央处理器(CPU)中央处理器是最流行的存储程序架构的处理器(计算元素)。程序被描述为一系列指令,所以通常每个指令会逐步执行操作。由于这种逐步执行,CPU通常适用于任何顺序操作的组合。另一方面,基本CPU不适合并行操作。为了解决这个问题,今天的CPU具有几个附加的可选功能。


单指令多数据(SIMD)/向量类型数据纯CPU不适合数据并行,因为内部数据路径带宽限制。为了解决这个限制,一些CPU具有SIMD或向量扩展,可以在一个指令或操作中处理多个(通常是4到16)数据流。此外,随着长数据字交易和更大的寄存器文件,与外部资源(如内存)的通信也将得到改善,但在处理大量内容时,仍会出现瓶颈。

• 多核

由于工艺技术趋势,在合理的功耗下提高单个CPU的性能是困难的。多核是解决这个问题的一种方法。如果应用程序具有多个(分离的)任务,多核将发挥很好的作用,但是如果它具有紧密耦合的内部通信,有时处理器间通信(IPC)将瓶颈操作。

数字信号处理器(DSP

DSP旨在加速算术操作(加法、减法、乘法、除法),例如乘积累加操作。

数据压缩/解压缩、数字滤波、控制、识别等都包括在内,这些算法大量使用乘积累加计算(MAC),这使得DSP能够高速管理这些过程。

图形处理单元通用计算(GPGPU)

GPGPU是一种将GPU的计算资源应用于图像处理之外目的的技术。图形处理单元(GPU)具有成千上万的算术核心(着色器单元),并通过并行重复简单的数值计算来实现图像处理的高速执行。利用这一特性,可以以高速执行类似图像处理的处理,其中包括人工智能(AI),如机器学习和神经网络、虚拟货币挖矿、科技研究中的数值计算和模拟以及流体计算。

要利用GPGPU,需要不同于通用处理器的编程开发环境。为了充分利用它,需要适合该架构的编程技术,编程开发环境例如NVIDIA的“CUDA”(统一设备架构)、Microsoft的“Direct Compute”和Khronos Group的“OpenCL”等。

专用加速器(例如ISP, xNN)

专用加速器基于为特定应用定制的体系结构。例如,数据流和存储器遵循专用方案。加速器甚至可以提供定制逻辑,形成高度专业化的计算元素。这种专门化极大地增加了计算效率和性能,但以牺牲通用性为代价。使用专用加速器可能需要专用和/或专有编程,甚至需要专用工具和框架。


文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>