马里兰大学王春生团队:全固态锂金属电池负极界面设计思路

发布时间:2024-01-29  

2024年1月8日,马里兰大学王春生团队在Nature Energy发表题为“Lithium anode interlayer design for all-solid-state lithium-metal batteries”的研究论文。果壳科技邀请了论文第一作者王则宜撰写解读文章。以下为王则宜的分享内容。



抑制锂枝晶生长的挑战


全固态锂金属电池有望应用于电动汽车上。相比于传统液态电解液,固态电解质不易燃,高机械强度等优点。然而,锂枝晶生长问题限制了全固态锂金属电池的推广。锂枝晶的生长机理尚未研究清楚。通常认为固态电池中锂枝晶有两种生长模式,一种是锂枝晶从锂负极穿入电解质(由外而内模式),另一种是锂金属直接在电解质内部成核并生长到外部电极(由内而外模式)。为控制锂枝晶由内而外生长,可以增加电解质的疏锂性,降低电解质的电子电导率。


对于由外向内的锂枝晶生长,此前的研究致力于提高固态电解质的机械强度、均匀性和致密度。然而,即使制备了无定形电解质和单晶固态电解质,由外向内的锂枝晶生长仍然发生。主要原因是锂负极会与固态电解质发生化学和电化学反应,从而改变固态电解质的力学性能。除了固体电解质的力学和化学/电化学性能外,在锂剥离过程中,锂金属与固态电解质的界面处也会形成空隙,这增加了电池的过电位,促进了电解质的还原和锂枝晶的生长。


在锂金属负极和固态电解质间插入中间层可以同时避免电解质还原和锂金属内空隙形成。中间层的离子和电子电导率、疏锂性影响锂沉积效果。当插入电子导电和亲锂界面相中间层(如Au、Al和Sn),锂金属与电解质界面的空隙被抑制,但高电子电导率加速了电解质的还原。使用疏锂或高离子导电中间层,(Li3OCl、LiF和 LiF-Li3N)可抑制电解质还原,但由于锂扩散率低,会促进空隙的形成。


最近报道的多孔疏锂/亲锂梯度夹层,则可同时抑制空隙形成和电解质还原。但夹层的电子离子电导率和梳锂性对锂沉积的影响并未被考虑。如果夹层具有低电子电导率、高离子电导率和疏锂性,从而使得锂沉积在负极和中间层的界面上而非固态电解质表面,那么这个方法是可行的。但是,如果中间层是亲锂性的,并且具有高电子电导率但离子电导率低,则锂会沉积在固态电解质表面,从而导致固态电解质被还原。中间层的疏锂性、电子/离子传导特性与锂枝晶抑制能力之间的关系对理解全固态电池至关重要,但尚未得到系统研究。


界面设计思路


在此,美国马里兰大学王春生教授等以Li7N2I-碳纳米管(LNI-CNT)中间层和LNI-Mg中间层为例,通过界面性质调控,将锂沉积稳定性与中间层的离子和电子电导率以及疏锂性相关联。LNI固体电解质具有高离子电导率,低电子电导率、高疏锂性和高电化学稳定性,而碳纳米管具有高疏锂性、高电子电导率和低振实密度。因此,将LNI以不同比例与碳纳米管混合,可以形成离子和电子电导率可变的多孔疏锂中间层。LNI-Mg中间层的Mg可以从中间层迁移到锂负极,从而在中间层内形成梯度电子电导率,从而降低层间厚度,增强锂枝晶的抑制能力。


对于LNI-CNT,90微米的LNI-5%CNT中间层使锂能够在锂/LNI-CNT界面上成核,然后随着锂的沉积/剥离中可逆地渗透到多孔夹层或从中间层内拔出(图1)。中间层内的锂核会随着锂的生长被完全融合,并在锂剥离过程中完全拔走。通过中间层设计控制锂的成核和生长,LNI-5% CNT使得Li/LNI/Li电池能够以4.0mA/cm² / 4.0mAh/cm²的高电流密度/容量可逆循环超过600小时。对于LNI-Mg中间层,18.5微米LNI-Mg中间层使Li4SiO4@LiNi0.8Mn0.1Co0.1O2/Li6PS5Cl/20µm-Li全电池实现了2.2 mAh/cm2面容量,并在60°C下循环350次后,容量保持率为82.4%。本研究表明通过中间层的设计可以显著提高全固态电池的枝晶抑制能力。



图1 锂/中间层界面的演变,包括锂的成核、锂的生长和锂的剥离过程。


界面对锂沉积的影响


本工作中使用的Li7N2I固态电解质具有高离子电导率和低电子电导率,高憎锂性以及高电化学稳定性,而碳纳米管具有高憎锂性、高电子导电性和低压实密度。因此,将不同比例的LNI电解质和碳纳米管混合可以形成离子电导率和电子电导率可调的多孔憎锂中间层。电化学实验,表征和模拟计算表明,中间层的电子/离子导电性,憎锂性能显著影响锂在中间层的形核和生长过程。其中,混合离子电子电导,憎锂的中间层能避免锂在电解质表面沉积,也能防止锂剥离时锂金属与电解质脱接触,因而有利于抑制锂枝晶生长(图2)。



图2 不同性质(离子导电、电子导电和混合导电)中间层对锂剥离/沉积行为的影响。


LNI-5% CNT中间层使得Li/LNI/Li电池实现了大于4.0 mA/cm2 / 4.0 mAh/cm2 的临界电流密度/容量(图3)。电池的过电势偏离欧姆定律表明锂从锂负极渗入多孔LNI-5% CNT中间层,增加了锂与中间层的接触面积。



图3 LNI-CNT混合导电中间层的抑制锂枝晶能力。


图4a和b展示了在锂沉积过程中Li//Li对称电池在混合导电中间层内部的成核区域(图4a)和生长区域(图4b)。锂沉积过程集流体上施加过电势η,锂会在中间层内局部电化学势低于临界成核 过电位(ηc)的区域成核(图4a)。成核区域与电化势分布有关。而锂的生长区域则决于锂沉积容量和中间层的孔隙率(图4b)。


锂在中间层内沉积的稳定性取决于锂成核区域长度(ln)、锂生长区域长度(lg)和中间层长度(li)以及憎锂性(图4c-d)。当锂成核区域长度(ln)小于或者等于锂生长区域长度(lg)且二者同时小于中间层长度(li)时,锂生长能消除成核的影响,避免循环过程中的枝晶形成。



图4 中间层的设计准则。


LNI-Mg中间层中由于Mg从中间层迁移到锂负极而形成中间层内部的梯度电子导电性,有利于降低中间层厚度并增强抑制锂枝晶的能力。18.5µm的具有梯度电子导电性的LNI-25%Mg中间层使得Li4SiO4@NMC811/LPSC/Li全电池在60℃下进行350个循环,其容量保持率达到了82.4%。(图5)



图5 混合导电中间层的优化以及全电池性能。


结论


在这项工作中,作者同时考虑锂在中间层内成核和生长,提出了一种用于抑制全固态锂金属电池锂枝晶生长的中间层设计准则。在理论模拟和实验验证的指导下,作者设计了多孔,疏锂,混合离子/电子导电的LNI-CNT中间层和电子梯度导电的LNI-Mg中间层,从而大大提高了全固态电池的抑制锂枝晶能力和可逆性。所提出的中间层设计准则为开发更安全、更高能量密度的全固态锂金属电池提供了一条途径。


文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>