给SiC FET设计PCB有哪些注意事项?

发布时间:2023-09-22  

SiC FET(即SiC JFET和硅MOSFET的常闭共源共栅组合)等宽带隙半导体开关推出后,功率转换产品无疑受益匪浅。此类器件具有超快的开关速度和较低的传导损耗,能够在各类应用中提高效率和功率密度。然而,与缓慢的旧技术相比,高电压和电流边缘速率与板寄生电容和电感的相互作用更大,可能产生不必要的感应电流和电压,导致效率降低,组件受到应力,影响可靠性。此外,由于现在SiC FET导通电阻通常以毫欧为单位进行测量,因此,迹线电阻可能相当大,须谨慎降低以保持低系统传导损耗。 

本文引用地址:

设定电流边缘速率

SiC FET可轻松实现超过1000A/μs的电流边缘速率(图1),这样SiC FET、其负载和本地去耦电容之间的开关回路周围的电感会产生瞬态电压(图2)。例如,依据E = -Ldi/dt,100nH回路电感可产生100V的瞬态电压,这会导致器件工作电压提高、击穿裕量减少且EMI增加。 

1695285052564629.png

图1 :与同等级的Si SJ MOSFET相比,SiC FET开关波形显示 >1000A/μs 的边缘速率

1695285035614460.png

图2 :具有高di/dt的典型开关回路

这是真实的电感值,在典型电源应用中,考虑到组件的物理尺寸,无法将其紧密封装在一起。例如,根据Terman的等式1计算得出,如果宽度(W)为2.5mm且铜重量(T)为2oz (0.07mm),对于每个 “出发” 和 “返回” 连接,仅50mm (l) 的迹线可产生大约100nH的总电感。 

1695285020941583.png

这个关系适用于隔离的出发和返回迹线,不适用于返回平面上方的单条迹线。有趣的是,从图中可以看出,电感与迹线宽度和厚度的关系相对较小,长度是主要因素。(图3) 

1695285004832727.png

图3 :根据等式1,隔离的迹线电感随厚度和宽度的变化

图表显示,通过将高频率去耦电容(图2中的Cd)放置在比大直流链路电容更靠近开关的位置,可有效缩短长度并获得最大优势,电容不是低电感类型时候效果更为明显。如果出发和返回路径十分接近,通常使用铜平面, 则电感大幅减少(图4)。 

1695284964153621.png

图4 :返回平面在迹线下方可显著减少总电感

根据Clayton的等式2,现在,与返回平面相距1.6mm(H)的2.5mm(W) 迹线的总回路电感仅为32nH。该等式对W/H>1有效,同样,迹线厚度不是主要因素,但现在,迹线宽度以及迹线与平面之间的距离可产生显著影响(图5)。如果返回平面同时位于迹线上方和下方,则电感进一步减少,并获得增强屏蔽的额外优势。 

29.png

30.png

图5 :当返回路径是铜平面时,电感减少,并随着间隔距离和迹线宽度的变化而显著变化

除迹线外,导通孔也会使电感增加,并且会出现电阻性压降,应尽可能避免在功率路径中使用。导通孔的电感取决于尺寸以及孔是否填补,直径为0.5mm、长度为1.6mm且未填补的孔,其电感大约为0.5nH。该值通常可以忽略不计,尤其是如果有多个平行的导通孔,功率路径中可能会出现这种情况。

栅极和源连接中的公共连接电感是一大问题

如果 SiC FET 栅极驱动回路及其源极电流共用任一长度的迹线,则公共连接的电感会产生瞬态电压,其中负载电流阶跃作用于栅极驱动(图6)。最糟糕的情况是,关断驱动信号的幅度减小,这可能会导致 “幻象导通”,在桥式转换器支路中产生 “击穿”,带来灾难性损坏。即使分离的栅极驱动回路连接至三引脚TO-247器件的源极,仍有大约10nH的封装电感,这是常见现象,无法消除,如果源极电流边缘速率为1000A/μs,会产生10伏的瞬态电压。在实际设计中,这些边缘速率通常较为缓慢,解决方案之一是使用四引脚器件,并与源极建立单独的内部 “开尔文” 连接,比如UnitedSiC ()提供的器件。这能够将公共连接电感降至大约1nH的裸片数据,从而实现更高的边缘速率以及可能更低的动态损耗。

31.png

图6 :高源极 di/dt 和公共连接电感会产生瞬态栅极电压

电路电容可导致不必要的耦合

请注意,较宽的迹线可有效降低电感和瞬态电压,但也会提高对相邻迹线、组件和地面的电容。SiC FET所具备的高dV/dt 速率能够引起位移电流,这会导致高EMI水平和混乱操作。例如,边缘速率为100kV/μs 时,SiC FET可轻松开关,仅通过10pF就能产生1A。电流以通常难以识别的路线围绕系统流动。在高侧开关的源连接处,对主开关节点的电容是一个特殊问题。主开关节点可通过物理方式隔离,以避免耦合至任何敏感的控制或反馈连接。然而,始终有路径通过栅极驱动器连接至系统其余部分,即使利用磁力或通过光耦合器将其隔离,信号路径和提供栅极驱动电源的DC-DC转换器中也将存在残余电容。为此,在指定具有低耦合电容的隔离部件时,应格外小心,最好不超过数pF。

开关节点和机箱接地之间的电容是共模EMI的主要来源,可能会导致超出法定限制。好在SiC FET等器件的效率往往意味着它们能够使用小型未接地散热器操作。如果必须使用较大的接地散热器,开关器件和散热器之间可使用铜箔形式的静电屏蔽,但这势必会提高热阻,因此必须小心地对其进行绝缘处理,以满足安全标准。

散热考虑因素

SiC FET的损耗通常非常低,因此迹线和平面可作为散热器,将结温保持在合理的范围内。由于与其他发热组件的相互作用,此类布局的热阻可能很难量化,因此通常使用多物理模拟软件来预测结果。PCB材料、层数及其铜重量、气流方向和速率、表面辐射系数和其他组件产生的交叉加热都必须考虑在内。

热量可使用散热孔通过PCB传递,凭借仅大约0.25W/m-K的核心热导率,对FR4进行改进。直径为0.5mm、长1.6mm且壁厚为0.025mm的未填补散热孔的热阻约为100°C/W(图7)。 

32.png

图7:典型散热孔的热阻约为100°C/W。电阻约为0.7毫欧,电感约为0.5nH

举个例子,仅12个该尺寸的散热孔就可以将25平方毫米、厚1.6mm的PCB区域的顶部铜平面至底部铜平面的热阻从约16°C/W减少至8°C/W。绝缘金属基板 (IMS) 的热阻约为FR4的45%,但其缺点是成本更高,并且对层数有实际限制。IMS介电厚度通常为每层0.15mm左右,以确保尽可能最低的热阻,这通常是目标,但的确会产生相对较高的电容,并且正如所讨论的,可能会产生高共模电流。IMS基板一般用于高密度应用,以便通过液体或强制空气冷却将热量最大限度排出到板上。对于采用对流冷却的非关键型系统,与铜平面之间具备散热孔的FR4可能更加适合。随着越来越多的器件可采用顶部散热方式,通过PCB对散热路径的依赖性降低。

已证明,与通过串联电阻减缓栅极驱动速度等方式相比,简单的 RC 缓冲电路可有效限制开关边缘产生的瞬态过电压。具有极低耗散的相对较小的表贴组件可用于有效降低峰值电压。缓冲电路应尽可能靠近器件,并使用具备足够宽度的迹线,以便最大限度减少电感,耗散必要的功率。迹线中以短 “颈” 形式出现的热折断可能有助于减少功率器件产生的交叉加热。

PCB迹线电阻导致效率降低

现在,即使在高额定电压下,SiC FET的导通电阻只有数毫欧,因此其传导损耗可能非常低。然而,相关迹线电阻可能相当大,因此应尽可能减少迹线电阻,以维持SiC FET优势。为了评估影响,PCB电阻取决于铜电阻率、厚度、温度和迹线长度。一种便捷的测量方式是沿着迹线计算 “平方” 的数量,例如,在25°C时,无论尺寸如何,35μm/1oz铜在每 “平方” 的电阻为0.5毫欧,所以1mm宽、 1mm长的迹线和10密耳宽、10密耳长的迹线一样,电阻均为0.5毫欧。因此,正如我们在计算电感时使用的,对于长度只有 100mm的2.5mm迹线,测量得出其电阻为20毫欧——通常比最低的SiC FET导通电阻还要多。此外,随着温度升高,铜电阻增加,在本例中,100°C时,铜电阻增加至大约26毫欧,因此应将这一因素考虑在内。对于直迹线,“计算平方数” 的方法十分准确,如有突然转弯,由于电流集聚效应,拐角处的电阻率会提高。无论如何,应避免直角,以防止出现局部高电场强度,避免电压击穿风险增加。

对于交流电,应考虑 “趋肤效应”,即随着频率增加,电流往往集中到表面流动,而不是在大部分导线内流动。但对于PCB迹线,该效应通常较小,趋肤深度约为66/f1/2mm,因此,即使在1MHz时,开关电流流向深度为0.07mm或总厚度为2oz的铜。谐波电流不会渗透得这么深,但其幅度更小。

当高频率交流电通过铜平面返回时,可以假设该路径上的电阻更低。然而,由于电流集中到功率迹线下方且只有直流组件显著分散,优势并不明显(图8)。

1695284880296258.png

图8 :平面中的交流返回电流集中到功率迹线下方。任何直流组件分散得更广

结论

应了解并降低实际连接电阻,以便充分发挥SiC FET的潜在性能。在一些转换拓扑结构中,寄生电感和电容可能是谐振槽的一部分,因此通常也应该降低。在这种情况下,量化和控制电路值仍非常重要。

作者:应用工程师Mike Zhu

文章来源于:电子产品世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    地填补了国内在这一领域的空白,有助于为国内的封装和PCB板级设计公司提供国际领先、自主可控的设计解决方案。 关于芯和半导体 芯和半导体是国产EDA行业的领军企业,提供覆盖IC、封装......
    地填补了国内在这一领域的空白,有助于为国内的封装和PCB板级设计公司提供国际领先、自主可控的设计解决方案。 关于芯和半导体 芯和半导体是国产EDA行业的领军企业,提供覆盖IC、封装到系统的全产业链仿真EDA解决......
    地填补了国内在这一领域的空白,有助于为国内的封装和PCB板级设计公司提供国际领先、自主可控的设计解决方案。关于芯和半导体芯和半导体是国产EDA行业的领军企业,提供覆盖IC、封装到系统的全产业链仿真EDA解决方案,致力于赋能和加速新一代高速高频智能电子产品的设计......
    工程师需要的不再只是高品质的电子元件,他们也需要一个既可靠又快速的PCB和电缆组装服务,能够提供快速的测试、故障检修和设计验证。针对研发中心、设计公司和新创企业都将受益于ELSA ERNI所提供的高端技术援助、生产样品、试产......
    仿真产品线为晶圆厂提供了精准的PDK设计解决方案, 为芯片设计公司提供了片上高频寄生参数提取与建模的解决方案; 先进封装设计仿真产品线为传统型封装和先进封装提供了高速高频电磁场仿真的解决方案; 高速系统设计仿真产品线为PCB板、组件......
    电子组件的首选工具,它包括了三大产品线: 芯片设计仿真产品线为晶圆厂提供了精准的PDK设计解决方案, 为芯片设计公司提供了片上高频寄生参数提取与建模的解决方案; 先进封装设计......
    终端需求疲软,PCB厂商纷纷降价抢单!; 【导读】5月4日消息,从众多芯片设计公司一季度的业绩来看,目前终端市场需求依旧疲软,使得对于芯片的需求持续下滑,同样下游的PCB板卡......
    体赛道很热门、竞争也非常的激烈。对于芯片设计公司而言,如何快速设计出芯片并流片成功是一件复杂的系统工程。当前,芯片设计公司高度依赖于算力资源,流片前的每个步骤都是依赖算力平台来进行编码、仿真......
    库和模型库等配置、管理和同步功能,为设计和仿真一体化提供基础支撑。 Genesis板级电子设计平台的发布,有效地填补了国内在这一领域的空白,有助于为国内的封装和PCB板级设计公司......
    地填补了国内在这一领域的空白,有助于为国内的封装和PCB板级设计公司提供国际领先、自主可控的设计解决方案。 ......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>