如何在STM32中得到最佳的ADC精度

发布时间:2023-07-20  

STM32家族中的所有芯片都内置了逐次逼近寄存器型ADC模块.内部大致框架如下:

12

每次ADC转换先进行采样保持,然后分多步执行比较输出,步数等于ADC的位数,每个ADC时钟产生一个数据位。说到这里,用过STM32 ADC的人是不是想到了参考手册中关于12位ADC转换时间的公式:

 

13

ST官方就如何保障或改善ADC精度写了一篇应用笔记AN2834。该应用笔记旨在帮助用户了解ADC误差的产生以及如何提高ADC的精度。主要介绍了与ADC设计的相关内容,比如外部硬件设计参数,不同类型的ADC误差来源分析等,并提出了一些如何减小误差的设计上建议。


当我们在做STM32的ADC应用遇到转换结果不如意时,常有人提醒或建议你对采样时间或外部采样电路做调整。这里调整的最终目的就是让信号进入ADC模块的充电时间与内部采样时间匹配,保证采得的电压尽量真实,最终得到符合精度要求的转换结果。下面就聊聊相关话题。


一、模拟信号源阻抗的影响

 

14

在做ADC操作时,在信号源与ADC引脚之间,或者说在串行电阻RAIN与ADC引脚AIN之间总有电流流过,自然会产生压降。内部采样电容CADC的充电由阻容网络中的开关和RADC控制。


显然,对CADC有效的充电由【RADC +RAIN】控制,充电时间常数是tc = (RADC + RAIN) ×CADC。不难理解如果采样时间小于CADC通过RADC +RAIN充电的时间,即ts < tc,则ADC转换得到的数值会小于实际数值。


可以看出,随着电阻(RADC+RAIN)的增加,对保持电容的充电时间也需要相应增加。对于STM32而言,RADC是内部的采样开关电阻,阻值相对固定,具体数值在芯片的数据手册里有给出。所以,这里真正可能变动的电阻就是信号源电阻RAIN了,它的变化影响充电常数,进而影响到芯片内部采样时间的选择。


注:tc是电容CADC充电完全的时间,此时Vc = VAIN(最大1/2LSB 误差)

Vc:采样电容CADC上的电压 

tc = (RADC + RAIN) × CADC 【CADC的值也是相对固定的】


二、信号源的容抗与PCB分布电容的对ADC的影响

做ADC时,除了考虑信号源端的电阻外,还需要考虑信号源本身容抗和在模拟输入端的分布电容(参见下图)。信号源的电阻和电容构成一个阻容网络,如果外部的电容(CAIN +Cp)没能完全充电至输入信号电压,ADC转换的结果显然是不准确的。(CAIN + Cp)的值越大,信号源的频率也就越受限制。(信号源上的外部电容和分布电容分别用CAIN和Cp表示。)

 

15

当外部电路的电容没有被模拟信号源完全充电的情况下,模拟输入信号电压与模拟输入脚的电压VAIN就不相同。如果模拟输入信号产生变化,它的变化频率(FAIN)的周期至少应该满足10RC原理,即10 × RAIN × (CAIN +Cp)。

TAIN = 模拟信号的周期 =1/FAIN

因为:TAIN ≥ 10 x RAIN x (CAIN + CP)

因此:FAIN ≤ 1 / [10 x RAIN x (CAIN+ CP)]

假如:RAIN = 25kΩ,CAIN = 7pF,CP = 3pF,则:

FAINmax = 1 / [10 x 25x103 x (7 +3)x10-12]

即信号源的最高频率FAIN(max)= 400kHz。

对于上述给出的信号源特性(容抗与阻抗),它的频率不能超过400kHz,否则ADC的转换结果将是不准确的。


三、模拟信号源的阻抗估算

上面聊了信号源阻抗和AD输入端的电容对ADC的影响,在这个基础上来看下最大允许信号源阻抗的估算。假定最大允许的误差是1/2 LSB。

参照上面的图9中的描述,假定此时输入端不存在输入信号充电不充分的情况。

16

这样得到误差 = VAIN – Vc  【Vc为内部采样电容CADC上的电压】

17

这里tS是采样时间。 

tS = TS / fADC,其中TS是以ADC时钟周期为单位的采样时钟个数 。


对于给定的tS,对应VAIN = VREF+的误差要大于对应VAIN< VREF+时的误差,这是因为把CADC从0V充电至VAIN,VAIN = VREF+时需要比在VAIN < VREF+时需要更多的充电时间。因此VAIN = VREF+时是计算最大允许信号源阻抗时需要考虑的最坏情况,此时误差为1/2LSB.

18

Rmax = (RAIN + RADC)max

这里N 是 ADC 分辨率 12

我们可以进一步得到:

19

以STM32F103芯片为例,如果这里Ts=7.5, fADC=14MHz,Cadc=12pF,RadcMax=1K,在误差为1/2LSB时的最大允许信号源阻抗为:RAIN(max) = 6.4 k

通过上面的分析,我们可以得知选择较长的采样时间或较慢的ADC时钟,能保障更好的转换效果。或者通过降低ADC时钟频率、选择较长采样时间或选择较低的分辨率,可以容许更大的外部信号源阻抗。

注:如果使用跟随放大器可以减小信号源的阻抗效应,因为放大器的高输入阻抗和非常低的输出阻抗把RAIN与RADC隔离开来。当然,放大器自身引入的偏移误差也应加以注意和考虑。

上面提到的RadcMax、Cadc参数在芯片数据手册的ADC特性表格里,我把STM32F103的截图如下。

20


文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    通过以上计算公式可以计算出TP1562AL1的上升时间T=1.48us;对于一般变频空调、洗衣机、电动自行车、变频器等应用,TP1562AL1的动态指标式已可以满足要求,倘若需要更快响应速度的运放,可以......
    变化范围在0.0V~3.5V时,粉尘浓度与电压呈线性关系。 图6粉尘电压转换图 电压值的转换计算: 粉尘转换计算: 由公式(1)(2)得出总的计算公式: 注:因ADC是12位,212的值......
    电动机转速公式是什么 电机速比计算公式 电机转速怎么换算成速度;  电动机转速公式是什么   电动机转速的计算公式是:   n 表示电动机的转速,单位是转/分钟(rpm);f 表示电源的频率,单位......
    2、电力工作常用的计算公式 3、三相......
    电机转速快慢怎么调 电机快慢是靠什么控制的 电机转速的计算公式;  电机转速快慢怎么调   要调节电机的转速,通常有以下几种方法:   通过变频器调速:使用变频器可以改变电源供电的频率,从而......
    面对探针的流量方程进行解算,再一方面对蒸汽进行压力、温度补偿,以保证测量精度,并用数字显示出差压、压力、温度、瞬时流量、累积流量、热量、速度等参数。   毕托管流量计计算公式   与毕托管流量计相关的计算公式......
    会发热,漆包线电阻率会随着温度变化而发生变化,计算公式为: 式中:7为线圈温度(℃) 将公式(9)代入磁动势计算公式(5),得出磁动势与温度的计算公式: 式中:U为工作电压(v):d为漆包线线径(mm......
    电磁转矩计算公式;电磁,物理概念之一,是物质所表现的电性和磁性的统称。如电磁感应、曳磁波等等。电磁是丹麦科学家奥斯特发现的。电磁现象产生的原因在于电荷运动产生波动,形成磁场,因此......
    SOC 的计算公式。本系统可以推广到 UPS电源或矿用锂电池管理系统等工程实际中使用 ......
    永磁同步电机磁场定向控制转速环PI调节器的参数整定;前言 本章节采用工程设计的方法,推导转速环PI调节器参数的计算公式,由此来设计永磁同步电机磁场定向控制的转速外环PI调节器参数,并通过Matlab......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>