单片机stm32时钟频率和配置方法详解

发布时间:2023-06-25  

  单片机stm32时钟频率

  STM32F103内部8M的内部震荡,经过倍频后最高可以达到72M。目前TI的M3系列芯片最高频率可以达到80M。


  在stm32固件库3.0中对时钟频率的选择进行了大大的简化,原先的一大堆操作都在后台进行。系统给出的函数为SystemInit()。但在调用前还需要进行一些宏定义的设置,具体的设置在system_stm32f10x.c文件中。


  文件开头就有一个这样的定义:

  //#define SYSCLK_FREQ_HSE HSE_Value

  //#define SYSCLK_FREQ_20MHz 20000000

  //#define SYSCLK_FREQ_36MHz 36000000

  //#define SYSCLK_FREQ_48MHz 48000000

  //#define SYSCLK_FREQ_56MHz 56000000

  #define SYSCLK_FREQ_72MHz 72000000

  

  ST 官方推荐的外接晶振是 8M,所以库函数的设置都是假定你的硬件已经接了 8M 晶振来运算的。以上东西就是默认晶振 8M 的时候,推荐的 CPU 频率选择。在这里选择了:

  #define SYSCLK_FREQ_72MHz 72000000

  也就是103系列能跑到的最大值72M

  然后这个 C文件继续往下看

  #elif defined SYSCLK_FREQ_72MHz

  const uint32_t SystemFrequency = SYSCLK_FREQ_72MHz;

  const uint32_t SystemFrequency_SysClk = SYSCLK_FREQ_72MHz;

  const uint32_t SystemFrequency_AHBClk = SYSCLK_FREQ_72MHz;

  const uint32_t SystemFrequency_APB1Clk = (SYSCLK_FREQ_72MHz/2);

  const uint32_t SystemFrequency_APB2Clk = SYSCLK_FREQ_72MHz;

  这就是在定义了CPU跑72M的时候,各个系统的速度了。他们分别是:硬件频率,系统时钟,AHB总线频率,APB1总线频率,APB2总线频率。再往下看,看到这个了:

  #elif defined SYSCLK_FREQ_72MHz

  staTIc void SetSysClockTo72(void);

  这就是定义 72M 的时候,设置时钟的函数。这个函数被 SetSysClock ()函数调用,而

  SetSysClock ()函数则是被 SystemInit()函数调用。最后 SystemInit()函数,就是被你调用的了

  所以设置系统时钟的流程就是:

  首先用户程序调用 SystemInit()函数,这是一个库函数,然后 SystemInit()函数里面,进行了一些寄存器必要的初始化后,就调用 SetSysClock()函数。 SetSysClock()函数根据那个#define SYSCLK_FREQ_72MHz 72000000 的宏定义,知道了要调用SetSysClockTo72()这个函数,于是,就一堆麻烦而复杂的设置~!@#$%^然后,CPU跑起来了,而且速度是 72M. 虽然说的有点累赘,但大家只需要知道,用户要设置频率,程序中就做的就两个事情:

  第一个: system_stm32f10x.c 中 #define SYSCLK_FREQ_72MHz 72000000

  第二个:调用SystemInit()

  单片机stm32时钟配置方法

  一、在STM32中,有五个时钟源,为HSI、HSE、LSI、LSE、PLL。

  ①HSI是高速内部时钟,RC振荡器,频率为8MHz。

  ②HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz。

  ③LSI是低速内部时钟,RC振荡器,频率为40kHz。

  ④LSE是低速外部时钟,接频率为32.768kHz的石英晶体。

  ⑤PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、HSE或者HSE/2。倍频可选择为2~16倍,但是其输出频率最大不得超过72MHz。

  二、在STM32上如果不使用外部晶振,OSC_IN和OSC_OUT的接法:如果使用内部RC振荡器而不使用外部晶振,请按照下面方法处理:

  ①对于100脚或144脚的产品,OSC_IN应接地,OSC_OUT应悬空。

  ②对于少于100脚的产品,有2种接法:第1种:OSC_IN和OSC_OUT分别通过10K电阻接地。此方法可提高EMC性能;第2种:分别重映射OSC_IN和OSC_OUT至PD0和PD1,再配置PD0和PD1为推挽输出并输出‘0’。此方法可以减小功耗并(相对上面)节省2个外部电阻。

  三、用HSE时钟,程序设置时钟参数流程:

  01、将RCC寄存器重新设置为默认值 RCC_DeInit;

  02、打开外部高速时钟晶振HSE RCC_HSEConfig(RCC_HSE_ON);

  03、等待外部高速时钟晶振工作 HSEStartUpStatus = RCC_WaitForHSEStartUp();

  04、设置AHB时钟 RCC_HCLKConfig;

  05、设置高速AHB时钟 RCC_PCLK2Config;

  06、设置低速速AHB时钟 RCC_PCLK1Config;

  07、设置PLL RCC_PLLConfig;

  08、打开PLL RCC_PLLCmd(ENABLE);

  09、等待PLL工作 while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)

  10、设置系统时钟 RCC_SYSCLKConfig;

  11、判断是否PLL是系统时钟 while(RCC_GetSYSCLKSource() != 0x08)

  12、打开要使用的外设时钟 RCC_APB2PeriphClockCmd()/RCC_APB1PeriphClockCmd()

  

  四、下面是STM32软件固件库的程序中对RCC的配置函数(使用外部8MHz晶振)

  /*

  * FuncTIon Name : RCC_ConfiguraTIon

  * Description : RCC配置(使用外部8MHz晶振)

  * Input : 无

  * Output : 无

  * Return : 无

  */

  void RCC_Configuration(void)

  {

  /*将外设RCC寄存器重设为缺省值*/

  RCC_DeInit();

  /*设置外部高速晶振(HSE)*/

  RCC_HSEConfig(RCC_HSE_ON); //RCC_HSE_ON——HSE晶振打开(ON)

  /*等待HSE起振*/

  HSEStartUpStatus = RCC_WaitForHSEStartUp();

  if(HSEStartUpStatus == SUCCESS) //SUCCESS:HSE晶振稳定且就绪

  {

  /*设置AHB时钟(HCLK)*/

  RCC_HCLKConfig(RCC_SYSCLK_Div1); //RCC_SYSCLK_Div1——AHB时钟= 系统时钟

  /* 设置高速AHB时钟(PCLK2)*/

  RCC_PCLK2Config(RCC_HCLK_Div1); //RCC_HCLK_Div1——APB2时钟= HCLK

  /*设置低速AHB时钟(PCLK1)*/

  RCC_PCLK1Config(RCC_HCLK_Div2); //RCC_HCLK_Div2——APB1时钟= HCLK / 2

  /*设置FLASH存储器延时时钟周期数*/

  FLASH_SetLatency(FLASH_Latency_2); //FLASH_Latency_2 2延时周期

  /*选择FLASH预取指缓存的模式*/

  FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable); // 预取指缓存使能

  /*设置PLL时钟源及倍频系数*/

  RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);

  // PLL的输入时钟= HSE时钟频率;RCC_PLLMul_9——PLL输入时钟x 9

  /*使能PLL */

  RCC_PLLCmd(ENABLE);

  /*检查指定的RCC标志位(PLL准备好标志)设置与否*/

  while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)

  {

  }

  /*设置系统时钟(SYSCLK)*/

  RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);

  //RCC_SYSCLKSource_PLLCLK——选择PLL作为系统时钟

  /* PLL返回用作系统时钟的时钟源*/

  while(RCC_GetSYSCLKSource() != 0x08) //0x08:PLL作为系统时钟

  {

  }

  }

  /*使能或者失能APB2外设时钟*/

  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB |

  RCC_APB2Periph_GPIOC , ENABLE);

  //RCC_APB2Periph_GPIOA GPIOA时钟

  //RCC_APB2Periph_GPIOB GPIOB时钟

  //RCC_APB2Periph_GPIOC GPIOC时钟

  //RCC_APB2Periph_GPIOD GPIOD时钟

  }

  STM32中定时器的时钟源

  STM32中有多达8个定时器,其中TIM1和TIM8是能够产生三对PWM互补输出的高级定时器,常用于三相电机的驱动,它们的时钟由APB2的输出产生。其它6个为普通定时器,时钟由APB1的输出产生。

  下图是STM32参考手册上时钟分配图中,有关定时器时钟部分的截图:

  单片机stm32时钟频率和配置方法详解

  从图中可以看出,定时器的时钟不是直接来自APB1或APB2,而是来自于输入为APB1或APB2的一个倍频器,图中的蓝色部分。

  下面以定时器2~7的时钟说明这个倍频器的作用:当APB1的预分频系数为1时,这个倍频器不起作用,定时器的时钟频率等于APB1的频率;当 APB1的预分频系数为其它数值(即预分频系数为2、4、8或16)时,这个倍频器起作用,定时器的时钟频率等于APB1的频率两倍。

  假定AHB=36MHz,因为APB1允许的最大频率为36MHz,所以APB1的预分频系数可以取任意数值;当预分频系数=1 时,APB1=36MHz,TIM2~7的时钟频率=36MHz(倍频器不起作用);当预分频系数=2时,APB1=18MHz,在倍频器的作用下,TIM2~7的时钟频率=36MHz。

  有人会问,既然需要TIM2~7的时钟频率=36MHz,为什么不直接取APB1的预分频系数=1?答案是:APB1不但要为TIM2~7提供时钟,而且还要为其它外设提供时钟;设置这个倍频器可以在保证其它外设使用较低时钟频率时,TIM2~7仍能得到较高的时钟频率。

  再举个例子:当AHB=72MHz时,APB1的预分频系数必须大于2,因为APB1的最大频率只能为36MHz。如果APB1的预分频系数=2,则因为这个倍频器,TIM2~7仍然能够得到72MHz的时钟频率。能够使用更高的时钟频率,无疑提高了定时器的分辨率,这也正是设计这个倍频器的初衷。


文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    信号并无特殊要求,只要保证一定的脉冲宽度,时钟频率低于12MHz即可。 晶体振荡器的振荡信号从XTAL2端送入内部时钟电路,它将该振荡信号二分频,产生一个两相时钟信号P1和P2供单片机使用。时钟......
    周期为机器周期的12倍。 即12T。 在如定时为1ms时,则需要单片机计算n*12T,让定时器溢出一次,这无法得出整数的1ms,存在误差。 (2)12MHz晶振 该晶振主要用精确生成定时器所需时钟频率,如......
    据系统需要配置为任何类型的钟控逻辑,包括单片机(微处理器)、FPGA、CPLD电路等。 8051单片机以及RS-232串行通信 选用时钟时,应认真考虑两个因素,即时钟频率和工作期限内的时钟精度。在8051单片机系统中,时钟频率......
    器的时序控制电路的控制下进行的,各种时序均与时钟周期有关。 1.时钟周期 时钟周期是单片机时钟控制信号的基本时间单位。若时钟晶体的振荡频率为fosc,则时钟周期Tosc= l/fosc如fosc=6 MHz,Tosc=166.7......
    返回输出时间显示程序。8051时钟频率可1.2~12MHz之间任意选择,在不影响系统总功率的前提下,时钟频率选择低一些可降低系统对其它元器件工作速度的要求,从而降低成本和提高系统的可靠性。本系统单片机器时钟频率采用6MHz......
    晶振电路: 如果外部时钟频率在33MHz以上时,建议直接使用外部有源晶振如果使用内部R/C振荡器时钟(室温情况下5V单片机为:11MHz~17MHz,3V单片机为8MHz~12MHz),XTAL1和XTAL2......
    关掉。 还有众所周知的是,如果单片机的时钟频率越高,那么高低电平的上升沿或者下降沿所需要的时间就会越短。这样整个系统的抗干扰能力就会随着时钟频率的增加而下降。所以如果遇到系统EMS相关......
    的其他问题迎刃而解…… 有关51单片机有关晶振的问题一并总结出来,希望对学51的童鞋来说能有帮助。 一,为什么51单片机爱用11.0592MHZ晶振? 其一:因为它能够准确地划分成时钟频率,与UART(通用......
    理清单片机中的各种周期;单片机   时钟周期 时钟周期: 时钟周期也叫振荡周期或晶振周期,即晶振的单位时间发出的脉冲数,一般有外部的振晶产生,比如12MHZ=12×10的6次方,即每......
    系统一般应该包括:单片机、晶振电路、复位电路。 晶振电路的原理及组成,作用: 在单片机系统里晶振的作用非常大,他结合单片机内部的电路,产生单片机所必须的时钟频率单片机的一切指令的执行都是建立在这个基础上的,晶振的提供的时钟频率......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>