三种探测设备在风向测量中的对比分析

发布时间:2023-06-15  

1 引言

在众多大气因子中, 风场资料是分析天气演变最直观和最有价值的资料之一。根据风场的演变,可以了解中小尺度等强对流天气发生发展的某些重要物理过程。因此目前对大气风场的研究受到越来越多的关注。


随着大气探测技术的发展,国内外用于探测大气风场的设备也随之增加。目前国内用于探测高空大气风场的仪器主要有无线电探空仪、风能梯度塔、新一代多普勒天气雷达、风廓线雷达以及微型探空飞机等。由于各种探测设备的工作原理、风场反演方法都存在差异,因此测得的大气风场的精度必然存在差异。而高精度的大气风场资料将对提高短时临近预报的准确度起到非常重要的作用。因此,我们对各种测风资料的测量精度进行比较,了解产生误差与不确定因素的某些原因,以便充分发挥风廓线产品在短时天气预报和强对流天气临近预警预报中的作用。


另外,根据中国气象局未来规划,一个计划由400座70—120米测风观测塔组成的风能资源专业观测网正在兴建,风廓线雷达网络也计划在国内组建,飞机探测风场也成为一个发展趋势。这些探测设备的建成可以真正弥补我国常规高空探测站网空间密度和时间密度的不足。同时,这些探测设备的探测精度如何也成为大家极为关注的问题,因此中国气象局气象探测中心组织本次试验,对三种探测仪器测量精度的对比分析,不仅可以作为科学研究的依据,而且为雷达布网等工作提供理论支持。


2 各种探测仪器的原理

2.1 风廓线雷达及其风场反演方法

风廓线雷达又称风廓线仪,顾名思义风廓线雷达提供的是风的廓线。在大气中随时存在着各种尺度的湍流,它们引起的折射指数的不均匀变化,对无线电波会产生散射作用。湍流存在于气流之中并随之移动,因此可以将湍流作为风的示踪物。风廓线雷达就是以晴空湍流作为探测目标,利用大气湍流对雷达电磁波的散射作用,探测大气风场。


由于风是一个矢量,要求雷达的天线具有三个或五个正交波束,通过测定每个波束方向风速引起的多普勒频移,在一定的假设条件下(湍流均匀、各向同性的假设下)就可计算出回波信号所在高度上的水平风向、风速和垂直气流速度。在一次测量中,风廓线雷达可以得到同一时刻不同高度层的水平风速风向廓线和垂直气流廓线。


基于风廓线雷达探测资料的风场反演方法常用速度-方位显示方法(Velocity Azimuth Display),称作VAD方法。


2.2 微型探空飞机及其风场反演方法

微型探空飞机是一种专门用于大气探测实验的气象飞机。它具有自动导航、自动驾驶功能。它采用GPS导航,在自动控制系统控制下完成预定航线的飞行,并实时地将飞机的轨迹和其他资料传送到地面,地面接收系统的微机显示飞机的经纬度和高度等数据。微型探空飞机的风场反演方法有水平空速归零测风方法和解析测风方法。本文采用水平空速归零测风方法。


水平空速归零测风方法就是利用微型无人驾驶飞机可以在很小的半径范围盘旋飞行的特点,使飞机在水平面上盘旋飞行,盘旋飞行一圈,相对空气而言,飞机回到了同一点,水平空速矢量之和为零,平均水平风速等于飞机平均水平地速。飞机在空中飞行时,相对地面的运动称为地速,相对空气的运动称为空速。空速(Vg)、地速(Va)和风速(V)的关系为:

三种探测设备在风向测量中的对比分析

由此可以看出这种方式得出的风速与日常业务测风的物理意义完全一致。

3 风廓线测量比较试验及资料对比分析

为了对风廓线雷达、风能梯度塔、微型探空飞机的测量精度进行比较分析,2008年9月24日中国气象局气象探测中心组织相关人员在内蒙古锡林浩特国家气候观象台进行对比试验。本次试验的探测设备分别采用北京爱尔达电子设备有限公司的工作频率为1290M移动风廓线雷达(Airda3000型)、气候观象台的100m风能梯度塔以及由江西省气象科学研究所研制的微型探空飞机。据天气预报介绍,试验当天锡林浩特国家气候观象台的天气情况为“晴,西南风4-5级,温度4-12°C”,天气系统相对稳定,非常满足试验所需要的气象条件。为尽量满足探测区域天气系统稳定的试验条件,试验进行时,三种探测设备的位置分布相对较近。风廓线雷达位于116°19′49.7″E,44°08′2.4″N,海拔高度为1107m,探测高度为50m-3400m;风能梯度塔位于116°18′44.9″E,44°08′32.4″N,海拔高度为1160m,探测高度为2m-100m;微型无人驾驶飞机指挥点位于116°19′54.8″E,44°07′42.1″N,探测高度人为控制。


3.1 风能梯度塔与风廓线雷达低层测风资料对比

根据探测设备的海拔高度和其探测高度,风能梯度塔可以分别得到海拔1162m的分钟平均风速、海拔1164m、 1170m、1180m、1190m、1210m、1230m、1260m的分钟平均风速及分钟平均风向;而风廓线雷达低层高度分辨率为50m,因此仅能得到海拔1157m、1207m、1257m分钟风速、风向。


本文首先对风能梯度塔1162m分钟平均风速与风廓线雷达1157m分钟风速进行比较,共选取相应时间的探测资料326组,风速差值由风能梯度塔测得的风速值减去风廓线雷达测得的风速值得到,具体比较结果如图1所示:

图1 风能梯度塔1162m分钟平均风速与风廓线雷达1157m分钟风速差的分布图

从图1可以看出,两者的风速差分布相对比较均匀,风能梯度塔测得的风速值比风廓线雷达测得的风速值要偏大一些。经计算,风能梯度塔的平均风速为8.2m/s,而风廓线雷达的平均风速为7m/s,两者的风速平均差为0.37m/s,标准差为1m/s(见表一)。


另外,本文分别对风能梯度塔1210m分钟平均风速、风向与风廓线雷达1207m分钟风速、风向以及风能梯度塔1260m分钟平均风速、风向与风廓线雷达1257m分钟风速、风向进行比较,分别选取相应时间的探测资料193组、165组、138组、146组。图2、4的风速差是用风能梯度塔测得的风速值减去风廓线雷达测得的风速值得到的,而图3、5测得的风向差则是由风廓线雷达测得的风向值减去风能梯度塔测得的风向值,具体比较结果如图2、3、4、5示。


图2、4显示,风能梯度塔1210m、1260m平均风速与风廓线雷达1207m、1257m分钟风速的偏差分布相对比较均匀,风能梯度塔测得的风速值比风廓线雷达测得的风速值明显偏大。经计算,两者的风速平均差分别为1.85m/s、1.76m/s;标准差分别为0.82m/s、0.83m/s。


而从图3、5风向的对比来看,风向偏差的总体走势趋于一致,且图5前半段显示,两种测量手段的风向相差无几,而后半段两者的风向有了较大的变化,风向差也有所增大。经计算,两者的风向平均差在1210m左右时为11°,1260m左右时为6.6°;相应的标准差分别为12.7°、11.1°(见表1)。

图2、3 风能梯度塔1210m平均风速、风向与风廓线雷达1207m分钟风速、风向的偏差分布图

图4、5 风能梯度塔1260m平均风速、风向与风廓线雷达1257m分钟风速、风向的偏差分布图

3.2 风能梯度塔、风廓线雷达、微型探空飞机三种探测设备的测风资料对比

本节采用9月24日下午13:30-15:00飞机试验过程中得到的微型探空飞机数据,并选取相应时间相同高度层的风廓线雷达数据及风能梯度塔数据进行比较。得到的三种探测设备的风速、风向对比结果如图6、图7所示。本次比较共选取微型探空飞机、风廓线雷达资料各30组,而风能梯度塔由于受到高度限制,进入比较的数据只有9组。计算可得,探空飞机与风能梯度塔测得的风速非常相近,两者平均差仅为0.9m/s.而与风廓线雷达测得的风速相差偏大,平均差达3.4m/s。


由图7并结合计算数据可知,微型探空飞机测得的风向与风廓线雷达测得的风向非常吻合,两者平均差仅为0.47°。而微型无人驾驶探空飞机与风能梯度塔的风向平均差为7.1°。

图6 相同时间相同高度层三种探测设备测得的风速资料的对比

图7 相同时间相同高度层三种探测设备测得的风向资料的对比

3.3 结果分析

本文共采用两种方式对三种探测设备的获得的测风资料进行对比分析,分析结果表明风廓线雷达最低层与风能梯度塔最低层数据比较风速差别较小,仅为0.37m/s。而风廓线雷达第二层、第三层数据与风能梯度塔相应层数据比较差别稍微偏大一些。另外,如图6所示,1200m—1400m之间三种探测设备的探测数据比较结果表明微型探空飞机测得的风速与风能梯度塔测得的风速差别甚微,而与风廓线雷达测得的风速差别较大,平均差为3.4m/s,主要原因是进入比较的风能梯度塔数据偏少,另外,两者的测风原理与风场反演方法差异太大也是造成这一结果的一个重要原因。图7的风向比较显示微型探空飞机与风廓线雷达、风能梯度塔测得的风向均有较好的一致性。


综合上述比较结果,引起对比出现差异的主要因素有:(1)观测方法的差异,即各种探测设备的探测原理各不相同,探测的目标也存在一定的差异,探测数据必然存在误差;(2)数据处理方法的差异,即各种风场反演的方法存在很大不同。风廓线雷达测风是对其上空一定高度层及探测范围内风的平均值;而风能梯度塔是对特定位置的风的测量,是对分钟风的一个平均;飞机测量的是飞行周期内飞机经过轨迹点的风的平均;(3)有效数据的数量与质量,本文选取的数据均是经过剔除最大误差后的数据,因此数据质量可以得到保证,但由于受到条件限制,能同时用于三种探测设备比较的数据量偏少,这也在一定程度上影响了比较结果的准确性;(4)资料的同时性和同地性,资料的同时性和同地性越好,得到的对比结果越具有参考价值,由于本次试验过程中天气系统相对稳定,探测设备间距很近,且各探测设备的时间分辨率均不大,因此本次实验条件基本满足同时性和同地性原则。


4 结论

通过对本次实验获取数据的比较分析,我们可以得出以下结论:

(1)风能梯度塔与其它两种探测设备相比,它的优点是测量数据稳定可靠、耗资低,缺点是探测高度低,范围小。

(2)与其它两种探测设备相比,风廓线雷达探测不仅具有实时性的特点,而且探测高度高,范围大,因此风廓线雷达的使用和布网可以改善我国探空资料站点不足的缺点,并且可以获得实时风数据,为天气预报提供更及时,更有价值的参考依据。从比较分析可知,风廓线雷达得到的数据较其它两种探测设备明显偏小,主要因为风廓线雷达得到的是一定范围内风的平均值。

(3)微型探空飞机探测资料与其它两种探测设备相比,其最大的优点是可人为控制飞机航线,探测方式灵活。从比较分析可知,微型探空飞机的探测数据与风能梯度塔的观测数据相差不大,在误差允许范围之内。所以,微型探空飞机有较大的应用空间,不仅可以用于对人烟稀少的偏远地区进行高空探测,而且可以用于特殊气象条件或突发气象事件的高空探测等工作。微型无人驾驶飞机可成为一种方便、经济、灵活的低空探测工具。


文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>