一、峰值检测电路定义
进大家庭⭕圈探讨回复: 交流
二、峰值检测电路原理
根据这样的要求,我们可以用一个二极管和电容器组成最简单的峰值检测器。如下图(TINA TI 7.0绘制):
这时候我们可以选择用面包板搭一个电路,接上信号源示波器观察结果,但在这之前利用仿真软件TINA TI进行简单验证会节省很多时间。通过简单仿真(输入正弦信号5kHz,2Vpp),我们发现仅仅一个二极管和电容器组成的峰值检测器可以工作,但性能并不是很理想,对1nF的电容器,100ms后达到稳定的峰值,误差达10%。而且,由于没有输入输出的缓冲,在实际应用中,电容器中的电荷会被其他部分电路负载消耗,造成峰值检测器无法保持信号峰值电压。
既然要改进,首先要分析不足。上图检测的误差主要来自与二极管的正向导通电压降,因此我们可以用模电书上说的“超级二极管”代替简单二极管(TINA TI 7.0绘制):
从仿真结果来看,同等测试条件下,检测误差大大减小。但我们知道,超级二极管有一个缺点,就是Vi从负电压变成正电压的过程中,为了闭合有二极管的负反馈回路,运放要结束负饱和状态,输出电压要从负饱和电压值一直到(Vi+V二极管)。这个过程需要花费时间,如果在这个过程,输入发生变化,输出就会出现失真。
因此,我们需要在电路中加入防止负饱和的措施,也就是说,我们输入部分的处理环节要能够尽量跟随输入信号的电压,并提供一个尽可能理想的二极管,同时能够提供有效的输入缓冲。一个经典的电路是通过在输入和输出间增加一个二极管,这有点类似于电压钳位(TINA TI 7.0绘制):
经过以上的简单描述,其实我们已经可以将峰值检测器分成几个模块:
(1)模拟峰值存储器,即电容器。
(2)单向电流开关,即二极管。
(3)输入输出缓冲隔离,即运算放大器。
(4)电容放电复位开关(这部分非必须,如:如果电容值选取合适,两次采样时间间隔较大)。
3、几种峰值检测电路
3.1分立二极管电容型
TINA TI的仿真结果如下:
值得一提的是,该图有几个用心之处:
(1)采用FET运放提高直流特性,减小偏置电流OPA128的偏置电流低至75fA。
(2)将场效应管当二极管用,可以有效减小反向电流同时增加第一个运放的输出驱动力。
(3)小电容应该是防止自激的。实际应用中可以用TL082双运放和1N4148来代替场效应管,性能价格比较高。
3.2无二极管型
该图使用TINA TI 7.0和Multisim10.1均未仿真成功,但电路应该是没有问题的,只是性能得看实验。重点一提的是EDN英文版上有篇文章(见参考文献)提供了一种非常棒的PKD:
性能如下:
该图用TINA未能仿真成功,Mutisim 12仿真成功:
性能如下:
3.3集成峰值检测电路
3.4其他结构峰值检测电路
四、检查电路实例
4.1基本的峰值检测电路
这种简单电路的工作过程是, 在交流电压的每一周期中, 可分为电容充电和放电两个过程。在交流电压的作用下, 在正半周的峰值附近一段时间内, 通过二极管对电容 C 充电,而在其它时段电容 C 上的电压将对电阻 R 放电。当然,当外界交流电压刚接上时,需要经历多个周期, 多次充电, 才能使输出电压接近峰值。但是, 困难在于二极管是非线性元(器)件, 它的特性曲线如实图下所示。当交流电压较小时,检测得的直流电压往往偏离其峰值较多。
这里的泄放电阻R,是指与 C 并联的电阻、下一级的输入电阻、二极管的反向漏电阻、以及电容及电路板的漏电等效电阻。不难想到, 放电是不能完全避免的。同时, 适当的放电也是必要的。特别是当输入电压变小时, 通过放电才能使输出电压再次对应于输入电压的峰值。实际上, 检测器的输出电压大小与峰值电压的差别与泄放电流有关。仅当泄放电流可不计时, 输出电压才可认为是输入电压的峰值。用于检测仪器中的峰值检测器要求有较高的精度。检测仪器通常 R 值很大,且允许当输入交流电压取去后可有较长的时间检波输出才恢复到零。可以用较小的电容,从而使峰值电压建立的时间较短。
本实验的目的, 在于研究如何用运算放大器改进峰值检测器, 进一步了解运算放大器之应用。
4.2峰值检测电路的改进
也可以按需要加一可调的泄放电阻。如果允许电路有很长的放电时间, 也可以不用外加泄放电阻。这种电路可以有效地隔离次级的影响, 且跟随器的输出电压(Vo)可视为与电容上的电压相等。
电路中的二极管, 仅在 Vi-Vo > 0 时才导通, 使电容C充电。这时, 二极管上的电压为(Vi-Vo)。为使在(Vi-Vo)很小时也能有足够的充电速度, 可将(Vi-Vo)经过放大, 再作用于二极管。按照这一设想, 可在检测器前加一级比较放大器。
在分析时常认为运算放大器失偏电压为理想值 0V。比较放大器是开环的差动放大器,它可以有很高的增益, 只要 Vi 略大于 Vo, 就可以输出很大的电压驱动 D1 对电容充电。例如运算放大器的增益为 100dB量级, 只需 Vi 比 Vo 大 0.02mV, 就可以输出 2V 的正向电压,显然, 加速了电容的充电过程,直至使 Vo 等于 Vi 的峰值为止。实际工作中, 决定 Vo 与 Vi 有差别的一个重要因素, 将是放大器输入端的失调电压。当然, 放大器也应有足够的带宽,以适应要求检测的交流电压的频率范围。
在 Vi-Vo < 0 时, 比较放大器的输出电压接近于负电源电压, 使 D1 上有较大的反向电压, D1 就会有一定的反向泄漏电流。为抑制 D1 的反向电流, 应使 D1 的正极在反向时的电压, 只略低于 Vo。为此, 在比较放大器(A2)与 D1 之间增设二极管 D2 和电阻 R2。
在 Vi > Vo 时, A2 输出较大的正向电压, 使 D2 与 D1 导通对电容充电。
在 Vi < Vo 时, A2 输出的反向电压使 D2 关断。这时, D2 的负极(D1 的正极)通过 R2 联于 A1 的输出端, 使 R2 一端的电压(对地)为 Vo。如图所示, 流过 D2 的反向电流通过 R2, 因而使 D2 的负极(D1 的正极)上和电容上的电压得以保持。
通常 R2 为数百kW的电阻, 例如在实图下中 R2 为 560kW。若 D2 的反向电流为 0.2mA, 则 R2 上的电压为 0.11V, 即 D1 上的反向电压为 0.11V。由此可见, D2 和 R2 有效的抑制了D1的反向电流, 其作用相当于增大了检测电路的泄放电阻。
还需注意, D2 还有极间电容 C2, 它与 R2 组成阻容耦合电路。以上的分析略去了 C2 的作用,实际上是假定输入信号的频率满足:W << 1/(R2C2)。
因此, 除了选用级间电容较小的二极管之外, 还应参照上式选择 R2。
上图是改进的峰值检测器的原理图。该电路还有一个实际问题。在输入信号的每周期的大部分时间中处于 Vi < Vo 的状态, 因而 A2 输出端的电压几乎等于负电源电压, A2 的中间级和输出级的某些管子, 必处于深饱和和深截止状态。仅当 Vi 在峰值附近的一小段时间中, A2 才可能在线性区中, A2 的某些管子应从深饱和状态(或深截止状态)转向线性区(放大区)中的状态。管子的这种状态的转换需要经历一段时间才能完成。这种效应限制了输入信号频率, 亦即限制了检测速度。
为了改善电路的速度, 用非线性元(器)件 D3, 将比较放大器组成非线性反馈的放大器。在 Vi > Vo 时,Vo2 高于 Vo, D3 处于反偏置状态(不导通),A2 仍可视为无反馈的高增益电路; 在 Vi < Vo 时,Vo2 低于 Vo, D3 处于正偏置状态(导通)呈现为低阻抗, A2 可视为有强反馈的低增益放大器。若 D3 的正向等效电阻为 RD3, 在 rD3 << R3 时, 只要 R3 充分大,保持 Vo 值变化较小,对于输入信号来说, 该电路相当于有偏置的跟随器。
若 rD3 可不计则输出电压为:Vo2 ≌ Vi -Vo – VD3。
Vo2 的最低值为 Vo2min ≌ -2VP – VD3。
式中 Vp 是输入电压 Vi 的峰值。在设计电路时, 若使 Vi 的最大峰值小于 A2 的负向摆幅之半,则 A2 就可以保持在线性区工作。当然,D3的 反向电阻应尽可能大,以保证 Vo2 为正值时不致通过 D3 泄漏至 Vo。
综上所述, 较完善的峰值检测器电路如实图下所示。
参数选择:
按照上面的分析, R3 应满足:RD3 >> R3 >> rD3 ,RD3 是 D3 的反向等效电阻。因 rD3 常在 100W 量级, RD3 常在 1000kW 量级或更大, 故 R3 可选为 10kW 量级。
整个电路,A2是输入缓冲,其输入端包含A1的输出反馈,用于实现比较功能“Vi高于Vo就打开下级电路”。A1是输出缓冲。
注意:
1、只要 R3 充分大,就能保持 Vo 值变化较小。
2、R2用于减少D2的反相泄露电阻。
文章来源于:电路一点通 原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关文章
变频驱动和工频驱动的区别(2022-12-05)
尖峰电压吸收器是一种新型的电机保护装置,如图7所示(航天科工集团的SVA型号)。并联连接电机的电源输入端。
图7 示意图
SVA尖峰电压吸收器的原理框图如图8所示,它的工作过程如下:
尖峰电压检测电路实时检测电机电源线上的电压......
变频器驱动与工频驱动的区别 变频器对电机的损伤有哪些(2023-07-21)
器的温度,当温度过高时,适当关闭尖峰能量吸收控制阀门,减小能量的吸收(在保证电机受到保护的前提下),避免尖峰电压吸收器过热而损坏;
轴承电流吸收电路的作用是将轴承电流吸收掉,保护电机轴承。
尖峰吸收......
变频器驱动与工频驱动的区别 变频器对电机的损伤有何影响(2023-10-30)
器还能保护电机的轴承。
尖峰电压吸收器是一种新型的电机保护装置,如图7所示(航天科工集团的SVA型号)。并联连接电机的电源输入端。
SVA尖峰电压吸收器的原理框图如图8所示,它的工作过程如下:
1)尖峰电压检测电路实时检测电机电源线上的电压......
变频器损伤电机的秘密,你知道几个?(2023-08-22)
器还能保护电机的轴承。
尖峰电压吸收器是一种新型的电机保护装置,如图7所示(航天科工集团的SVA型号)。并联连接电机的电源输入端。
SVA尖峰电压吸收器的原理框图如图8所示,它的工作过程如下:
1)尖峰电压检测电路实时检测电机电源线上的电压......
变频器对电机的损伤包括哪几个方面?是如何对电机产生不良影响的?(2024-07-23)
的问题得到了彻底的解决(电缆再长,也不会出现尖峰电压了)。
(4)在电缆与电机接口的位置安装尖峰电压吸收器:前面几个措施的缺点是当电机的功率较大时,电抗器或滤波器的体积、重量很大,价格较高,另外,电抗器和滤波器都会导致一定的电压......
详解开关电源缓冲吸收电路~(2024-12-12 19:23:17)
。
缓冲电感的存在延迟和削弱的开通冲击电流,实现了一定程度的软开通。
无损吸收电路的存在延迟和降低了关断电压......
变频器对电机的损伤问题如何预防?(2024-01-31)
了)。
4) 在电缆与电机接口的位置安装尖峰电压吸收器:前面几个措施的缺点是当电机的功率较大时,电抗器或滤波器的体积、重量很大,价格较高,另外,电抗器和滤波器都会导致一定的电压降,影响......
详解RCD钳位电路(2024-02-29)
压器漏感Lk的能量无法耦合至副边,只能通过寄生电容释放能量,引起的尖峰电压,可以通过电阻R1吸收回路吸收能量。
1、工作原理
为了简化,其他的元器件已去掉,工作过程:Vin是整流之后的直流脉动电压,当开......
五种浪涌保护器的防护方法(2024-08-12)
交流电源的感应雷击防护为例,常用方法在零、地线之间并上合适的压敏型元件,以吸收限制感应雷击产生的尖峰电压。电源线路防雷效果的好坏完全取决于压敏器件参数的选择和压敏器件工作的可靠性。压敏......
5种浪涌防护方法,你不看看!(2024-11-18 19:30:30)
如下:
以单相220V交流电源的感应雷击防护为例,常用方法在零、地线之间并上合适的压敏型元件,以吸收限制感应雷击产生的尖峰电压......