机械按键在按下的过程中会出现抖动的情况,如下图,这样就会导致本来按下一次按键的过程会出现多次中断,导致判断出错。在按键驱动程序中我们可以这么做:
在按键驱动程序中我们可以这么做来取消按键抖动的影响:当出现一个按键中断后不会马上去处理它,而是延时一个抖动时间(一般10ms),如果在这个时间内再次出现中断那么再次延时10ms。这样循环,一直到在这个10ms内只有一个按键中断,那么就认为这次是真的按键值,然后在定时器处理函数里处理它。上述过程可以利用内核的定时器来实现。
定时器二要素:定时时间、定时时间到后做什么事情。根据这两个要素来编写程序,直接在sixth_drv.c的驱动程序上更改直接看到代码:
1、定时器的创建,先建立一个定时器结构
static struct timer_list buttons_timer;//定义一个定时器
2、在模块装载时初始化定时器
static int sixth_drv_init(void)
{
/*增加一个定时器用于处理按键抖动*/
init_timer(&buttons_timer);
buttons_timer.expires = 0;//定时器的定时时间
// buttons_timer->data = (unsigned long) cs;
buttons_timer.function = buttons_timeout;//定时时间到后的处理函数
add_timer(&buttons_timer);//将定义的定时器放入定时器链表
sixthmajor = register_chrdev(0, 'buttons', &sixth_drv_ops);//注册驱动程序
if(sixthmajor < 0)
printk('failes 1 buttons_drv registern');
sixth_drv_class = class_create(THIS_MODULE, 'buttons');//创建类
if(sixth_drv_class < 0)
printk('failes 2 buttons_drv registern');
sixth_drv_class_dev = class_device_create(sixth_drv_class, NULL, MKDEV(sixthmajor,0), NULL,'buttons');//创建设备节点
if(sixth_drv_class_dev < 0)
printk('failes 3 buttons_drv registern');
gpfcon = ioremap(0x56000050, 16);//重映射
gpfdat = gpfcon + 1;
gpgcon = ioremap(0x56000060, 16);//重映射
gpgdat = gpgcon + 1;
printk('register buttons_drvn');
return 0;
}
3、编写定时器处理函数
static void buttons_timeout(unsigned long data)
{
unsigned int pin_val;
static long cnt=0;
//printk('timeout cnt : %dn',++cnt);
if(pin_des==NULL)
return;
else
{
// printk('pin_des != NULLn');
pin_val = s3c2410_gpio_getpin(pin_des->pin);
if(pin_val) //按键松开
key_val = 0x80 | pin_des->key_val;
else
key_val = pin_des->key_val;
wake_up_interruptible(&button_waitq); /* 唤醒休眠的进程 */
ev_press = 1;
kill_fasync(&sixth_fasync, SIGIO, POLL_IN);//发生信号给进程
}
}
4、当在卸载驱动时将定时器删除;在中断处理程序中直接改变定时器的超时时间,并记录下是哪个按键按下的即可,其他处理都在定时器超时函数中。直接看到完整代码:
#include
#include
#include
#include
#include //含有iomap函数iounmap函数
#include //含有copy_from_user函数
#include
#include //含有S3C2410_GPF0等相关的
#include
#include //含有IRQT_BOTHEDGE触发类型
#include
#include
#include //含有各种错误返回值
//#include
static struct class *sixth_drv_class;//类
static struct class_device *sixth_drv_class_dev;//类下面的设备
static int sixthmajor;
static unsigned long *gpfcon = NULL;
static unsigned long *gpfdat = NULL;
static unsigned long *gpgcon = NULL;
static unsigned long *gpgdat = NULL;
struct fasync_struct *sixth_fasync;
static unsigned int key_val;
struct pin_desc
{
unsigned int pin;
unsigned int key_val;
};
static struct pin_desc pins_desc[4] =
{
{S3C2410_GPF0,0x01},
{S3C2410_GPF2,0x02},
{S3C2410_GPG3,0x03},
{S3C2410_GPG11,0x04}
};
static struct pin_desc *pin_des=NULL;
static unsigned int ev_press;
static DECLARE_WAIT_QUEUE_HEAD(button_waitq);//注册一个等待队列button_waitq
static atomic_t open_flag = ATOMIC_INIT(1); //定义原子变量open_flag 并初始化为1
static DECLARE_MUTEX(button_lock); //定义互斥锁
static struct timer_list buttons_timer;//定义一个定时器
/*
*0x01、0x02、0x03、0x04表示按键被按下
*/
/*
*0x81、0x82、0x83、0x84表示按键被松开
*/
/*
*利用dev_id的值为pins_desc来判断是哪一个按键被按下或松开
*/
static irqreturn_t buttons_irq(int irq, void *dev_id)
{
pin_des = (struct pin_desc *)dev_id;//取得哪个按键被按下的状态
mod_timer(&buttons_timer, jiffies+HZ/100);//10ms之后调用定时器处理函数
return IRQ_HANDLED;
}
static int sixth_drv_open (struct inode * inode, struct file * file)
{
int ret;
// if(atomic_dec_and_test(&open_flag)==0)//自检后是否为0,不为0说明已经被人调用
// {
// atomic_inc(&open_flag);//原子变量+1
// return -EBUSY;
// }
if(file->f_flags & O_NONBLOCK)//非阻塞方式
{
if(down_trylock(&button_lock))//获取信号量失败则返回
return -EBUSY;
}
else
down(&button_lock);//获得信号量
ret = request_irq(IRQ_EINT0, buttons_irq, IRQT_BOTHEDGE, 's1', (void * )&pins_desc[0]);
if(ret)
{
printk('open failed 1n');
return -1;
}
ret = request_irq(IRQ_EINT2, buttons_irq, IRQT_BOTHEDGE, 's2', (void * )& pins_desc[1]);
if(ret)
{
printk('open failed 2n');
return -1;
}
ret = request_irq(IRQ_EINT11, buttons_irq, IRQT_BOTHEDGE, 's3', (void * )&pins_desc[2]);
if(ret)
{
printk('open failed 3n');
return -1;
}
ret = request_irq(IRQ_EINT19, buttons_irq, IRQT_BOTHEDGE, 's4', (void * )&pins_desc[3]);
if(ret)
{
printk('open failed 4n');
return -1;
}
return 0;
}
static int sixth_drv_close(struct inode * inode, struct file * file)
{
// atomic_inc(&open_flag);//原子变量+1
up(&button_lock);//释放信号量
free_irq(IRQ_EINT0 ,(void * )&pins_desc[0]);
free_irq(IRQ_EINT2 ,(void * )& pins_desc[1]);
free_irq(IRQ_EINT11 ,(void * )&pins_desc[2]);
free_irq(IRQ_EINT19 ,(void * )&pins_desc[3]);
return 0;
}
static ssize_t sixth_drv_read(struct file * file, char __user * userbuf, size_t count, loff_t * off)
{
int ret;
if(count != 1)
{
printk('read errorn');
return -1;
}
if(file->f_flags & O_NONBLOCK)//非阻塞方式
{
if(!ev_press)//判断是否有按键按下,如果没有直接返回
{
key_val = 0;
ret = copy_to_user(userbuf, &key_val, 1);
return -EBUSY;
}
}
else//如果没有按键动作,直接进入休眠
wait_event_interruptible(button_waitq, ev_press);//将当前进程放入等待队列button_waitq中
ret = copy_to_user(userbuf, &key_val, 1);
ev_press = 0;//按键已经处理可以继续睡眠
if(ret)
{
printk('copy errorn');
return -1;
}
return 1;
}
static unsigned int sixth_drv_poll(struct file *file, poll_table *wait)
{
unsigned int ret = 0;
poll_wait(file, &button_waitq, wait);//将当前进程放到button_waitq列表
if(ev_press)
ret |=POLLIN;//说明有数据被取到了
return ret;
}
static int sixth_drv_fasync(int fd, struct file * file, int on)
{
int err;
printk('fansync_helpern');
err = fasync_helper(fd, file, on, &sixth_fasync);//初始化sixth_fasync
if (err < 0)
return err;
return 0;
}
static struct file_operations sixth_drv_ops =
{
.owner = THIS_MODULE,
.open = sixth_drv_open,
.read = sixth_drv_read,
.release = sixth_drv_close,
.poll = sixth_drv_poll,
.fasync = sixth_drv_fasync,
};
static void buttons_timeout(unsigned long data)
{
unsigned int pin_val;
static long cnt=0;
//printk('timeout cnt : %dn',++cnt);
if(pin_des==NULL)
return;
else
{
// printk('pin_des != NULLn');
pin_val = s3c2410_gpio_getpin(pin_des->pin);
if(pin_val) //按键松开
key_val = 0x80 | pin_des->key_val;
else
key_val = pin_des->key_val;
wake_up_interruptible(&button_waitq); /* 唤醒休眠的进程 */
ev_press = 1;
kill_fasync(&sixth_fasync, SIGIO, POLL_IN);//发生信号给进程