一种基于电流源基准型LDO的放大器供电时序电路的应用

发布时间:2023-10-13  

相信你们在设计电路中经常会碰到有时序要求的电路,比如说FPGA数字电路的供电,比如我们给模拟的供电,等等。通常来说,我们有sequencers这种产品,其中又分为模拟时序控制芯片和数字时序控制芯片;模拟时序控制芯片,将电源输出电压作为输入信号,实时监测电源输出,当电源输出达到阈值时,会给一个类似于power good的电平信号,这样可以将这个电平信号控制下一级电源的EN,从而控制下一级电源电路的开启,从而达到时序控制的目的。

本文引用地址:

下图以ADI 模拟时序控制芯片ADM1085为例,如图一。数字时序电路类似,通常是将已经写好的状态机储存在EEPROM中,上电了就能让状态机控制时序。        

1697101478774714.png

图一 ADM1085时序控制电路

随着GaAs技术的不断提升,其高频低噪声的特点被人们发现,从而广泛的应用于卫星通讯、微波点对点连线、雷达系统等地方,从应用上说,我们的的频带可以做的越来越宽,噪声也做得越来越好,但是他有一个比较大的缺点,需要负压供电,并且需要控制好负压供电的时序,时序控制的不好,很容易烧毁,而这种宽频的成本通常很高,所以时序控制电路的设计就至关重要,如图2,是一种工作在26.5G的LNA的供电时序要求。

通常来说,以上通用的时序控制电路,基本上都是控制正电源的时序控制,目前对负压时序控制的电路基本上比较少,并且上电时序和断电时序要求不一样,所以目前基于这种特殊时序电路的研究就迫在眉睫,本文将以ADI低噪声,电流型, LT3042为例,探讨LT3042为这种宽频供电时序的可行性。

Power good,顾名思义,就是电源OK的意思,由于现在电源产品的集成度越来越高,通常将power good功能集成在电源里面,一般的DCDC,会监控输出电压,当输出电压达到90%以上的设定值时,会让PG电平为高,我们直接用一个上拉电阻将PG与Vout连接起来就能使PG为高电平,从而给下一级电源一个使能信号,类似于我们上面讲到的模拟sequencer的控制原理。

1697101450489844.png

图2 GaAs宽频放大器的供电时序

LT3042是一款超低噪声的电流型,由于内部集成了低噪声电流源,直接用一个外部电阻就能控制输出电压,这种控制方式最大的优势是噪声,PSRR,环路增益都与输出电压无关,不随输出电压变化而变化,并且实现超低噪声,相比于电压型基准,电流型基准没有反馈电阻环路,输出噪声大幅度降低。目前此芯片输出噪声低至0.8µVRMS (10Hz to 100kHz), Ultrahigh PSRR: 79dB at 1MHz,支持多相并联输出,可多片多相输出大电流,目前我们基于LT3042架构,最高单片输出1A的为LT3041,LT3042单片输出200mA,基于超低噪声,超高的PSRR,LT3042非常适合给RF LNA供电。咱们来看看LT3042的功能框图,如图三所示。

在系统框图里面,有100uA的精密电流源,Set管脚这里需外接一个精密电阻,电流源和此精密电阻构成精密基准源,输出电压与此基准源比较,当输出电压与基准电压相等时,电压输出稳态,此时QPWR 管工作在线性区。为了输出电压稳定和低噪声起见,Set管脚通常会对地加一个4.7uF的电容,通常这个电容会使输出电压启动时间变长,为了实现快速启动,内部集成了2mA的电流源,在输出电压达到设定值之前加快电压启动,输出电压分压与300mV的内部基准电压源比较,当PGFB管脚电压达到300mV时,关掉2mA的电流源,实现输出电压为100uA*Rset,并且实现PGFB电压可调的功能,现在让我们来用LTspice仿真下使能Fast Start-Up和不使能Fast Start-Up的对比。如图四,不使能Fast Start-Up;图五,使能Fast Start-Up。

1697101433221004.png

图3 LT3042的功能框图

1697101420299692.png

图4 不使能Fast Start-Up

1697101405941321.png

图5 使能Fast Start-Up,截止点在输出电压为3.27V(可调)

那么如何实现图2所要求的的电源时序控制呢,我们将利用VDD2电源的powergood去使能VSS2,另外利用LT3042的输出缓启动达到滞后VSS2的目的,我们看看效果如何,电路图如图六。

1697101388269720.png

图6 放大器供电电源图

1697101377425921.png

图7 上电过程,VDD2率先稳定,VSS2其次,大概1ms VDD2达到输出电压,VSS2达到90%输出

1697101360842933.png

图8,上电过程,VDD1大概需要3.5S左右达到预定输出电压,此时快速启动关闭

由上面的仿真分析可以看到,上电过程不存在问题,上电顺序为VDD2,VSS2,VDD1。我们后续在设计放大器供电时序可以参照这种方案,全部都是硬件控制,无需处理器给控制信号,简化了我们的硬件电路设计。

由于现在电源的集成度越来越高,集成的功能越来越多,供我们选择的硬件方案也越来越多,我们可以根据我们应用的需要,选择最适合我们的电源方案设计。   

文章来源于:电子产品世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    功放电路大全(2024-04-22)
    对以上的功放电路做详细的介绍和分析。 01 A类功放(又称甲类功放) A类功放如上图,在信号的整个周期内都不会出现电流截止(即停止输出)的一类放大器,但是A类放大器工作时会产生高热,效率很低。 尽管A类功......
    、LM358 脉冲发生器 21、LM358 桥式电流放大器、 22、LM358 参考......
    D类音频放大器工作原理图+设计所需组件清单;这篇文章主要是分享:D 类放大器,D 类放大器的优缺点,D 类放大器原理、D 类放大器电路图、D 类放大器设计、D 类放大器测试。 一、D 类放大器......
    了解 D 类音频放大器的工作原理,我们需要了解 D 类音频放大器的功能以及开关信号是如何产生的。下面给出了框图帮助大家理解。 D 类音频放大器工作原理......
    频谱仪内部工作原理 谐波测试准确性总结;前言 准确测试谐波的前提是对频谱仪内部的工作原理有一个比较清晰的认识。 频谱仪内部工作原理 频谱仪的工作原理如下图所示,当有信号输入到频谱仪后,首先......
    汽车发动机混合气已经广泛采用了闭环控制,混合气浓度不再需要人工调节,可变电阻器也随之被取消。 日产汽车热线式空气流量传感器 1.6L卡罗拉热线式空气流量传感器 捷达/桑塔纳热模式空气流量传感器 三、热线式/热模式空气流量传感器工作原理......
    电阻器也随之被取消。 日产汽车热线式空气流量传感器 1.6L卡罗拉热线式空气流量传感器 捷达/桑塔纳热模式空气流量传感器 三、热线式/热模式空气流量传感器工作原理 利用......
    射频功率放大器在辉光放电特征及风速测量原理中的应用;实验名称:辉光放电特征及风速测量原理 研究方向:辉光放电 测试设备:信号发生器、ATA-8202射频功率放大器,热成像仪、万用表、等离......
    资料汇集 运算放大器设计结构简单:整流滤波、电压比较、增益选择和 运放设计直流放大器(增益600,输入电阻120k,输出......
    。 Ur为主模块的基准电压,Uf为输出电压反馈信号。经过电压误差放大器,得到误差电压Ue,成为主模块的电流基准,与Ui1(该参数反映主模块电流的大小)比较后,产生控制电压Uc1,控制调制器和驱动器工作......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>