学子专区—ADALM2000实验:磁性接近传感器

发布时间:2023-08-25  

目标


本次实验的目标是利用磁场生成和检测原理去构建简单的接近检测器,并观察检测器输出电压是如何随着电磁体越来越靠近传感器而增加的。


背景知识


简单的接近传感器可检测物体对象之间的距离,可用于多种应用,从简单的门窗开关检测到复杂的高精度绝对位置检测器,应用广泛。接近传感器可采用多种方式设计,其中一种涉及检测磁体(通常为永磁体,但也可能是电磁体)产生的磁场强度。在本次实验中,我们使用铁氧体磁芯螺线管产生磁场。螺线管是一种以圆柱形方式缠绕着磁芯(通常用于制造具有特定电感值的电感)或电磁体的线圈。


ADALP2000模拟部件套件中的100 μH电感用于产生足够强的磁场,并且能够被该套件中集成的AD22151磁场传感器检测到。AD22151是一款线性磁场传感器,其输出电压与垂直施加于封装上表面的磁场成比例。AD22151磁场传感器的工作原理基于霍尔效应。在磁场环境下,当电流流经某个导体时,导体两端就会产生电压(霍尔电压),这种现象就是霍尔效应。运动电荷在磁场中受洛伦兹力作用会发生偏转,从而形成电场,产生霍尔电压。


材料


ADALM2000主动学习模块

无焊试验板和跳线套件

四个100 Ω电阻

一个100 μH电感

一个AD22151磁场传感器

两个470 Ω电阻

一个100 kΩ电阻

一个0.1 μF电容

一个10 μF电容

一个200 kΩ电阻

一个LED


硬件设置


首先,在无焊试验板上构建图1所示的电磁体电路。


 image.png

图1.电磁体电路。


将包含AD22151磁场传感器的霍尔效应传感器电路(图2)添加到无焊试验板中。


 image.png

图2.霍尔效应传感器电路。


试验板连接如图3所示。


 image.png

图3.磁性接近传感器试验板连接。


程序步骤


使用信号发生器W1生成一个恒定的5 V信号,作为AD22151的VCC输入。打开至5 V的正电源,为电磁体供电。当电磁体远离芯片且传感器附近不存在磁场时,示波器的通道1将显示AD22151的输出。


此电压相当于零高斯点,理想情况下为中点电源电压,采用5.0 V电源时为2.5 V,但由于传感器和运算放大器中的直流偏置要乘以运算放大器的闭环增益,所以该电压与中点电源电压不同。


 image.png

图4.输出失调电压。


如果将电磁体更靠近芯片,输出电压随磁场强度成比例地增加。在图5中,可以看到电压如何随电磁体越来越靠近芯片而增大。当电磁体离芯片较远时,电压将再次降低,直至达到零高斯失调电压。


 image.png

图5.输出电压变化。


我们可以在5.0 V电源和引脚6的运算放大器求和节点之间添加一个电阻R4,以改变输出失调电压。这样在无外加磁场的情况下,能够使传感器输出电压尽可能接近其线性范围的下限。接下来,我们来计算R4值。


我们指定VCC为AD22151的电源电压,VMID为中点电源电压。


在通道2使用电压表工具测量VCC。要计算R4,必须清楚运算放大器求和节点的输入和输出电流。通过R2的电流定义为IR2。在理想情况下,此电流为零,因为其每侧的电压为VMID,但零场内部霍尔效应传感器输出电压与内部缓冲电压VREF之间会存在一个较小的失调电压。对于低增益电路,此电压在许多情况下可忽略不计,但在高增益电路中(如本例)我们必须加以考虑。


使用电压表测量并记录引脚7处的电压,并将其定义为VREF。使用电压表测量并记录引脚6处的电压,并将其定义为VCM;此为运算放大器输入端的共模电压,并且由负反馈驱动至非常接近内部霍尔效应传感器的输出。计算R2两端的电压:


VR2 = VREF – VCM (1)


流经R2的电流为:


IR2 = VR2/235 Ω (2)


计算流经反馈电阻R3的电流时可考虑电磁体远离芯片时的传感器输出电压,相当于传感器的零高斯点。将此电压定义为VOUT,Z,然后计算电流:


IR3 = (VCM – VOUT,Z)/100 kΩ (3)


计算将VOUT,Z从其当前电平降至较低电平(本例中为0.5 V)所需的电压偏移量。请注意,这是一个负值,计算公式如下:


VSHIFT = 0.5 V – VOUT,Z (4)


通过反馈电阻R3使VOUT,Z偏移至0.5 V所需的额外电流ISHIFT的计算公式如下:


ISHIFT = VSHIFT/100 kΩ (5)


请注意,这是一个负值,因为VSHIFT为负数。通过R4(用于产生所需失调电压)流入求和节点的电流(IR4)与ISHIFT的方向相反,因此可以写成IR4 = –ISHIFT,为正值。


计算R4的值,注意R4两端电压为VCC与VCM之差,计算公式如下:


R4 = (VCC – VCM)/IR4                                                                     (6)


 image.png

图6.包含电阻R4(可改变失调电压)的电路。


从套件中选择一个最接近R4计算值的电阻。四舍五入产生的误差会导致更高的输出电压。将R4置于电路中,如图6中的原理图所示。此外,图8中也显示了如何将此电阻置于试验板中。在这种情况下,套件中可用的最接近阻值为200 kΩ。在示波器的通道1,可以看到输出失调电压已降至其线性范围的下限,接近所需的0.5 V电平。


 image.png

图7.输出失调电压已降低。


带LED指示灯的磁性接近传感器


可将接近传感器输出端的LED用作视觉指示器。可按照图8中所示进行连接。将100 Ω电阻置于LED的阳极和传感器输出端之间。这可以限制通过LED的电流。将阴极连接至GND。您会发现,电磁体越靠近芯片,LED灯越亮,因为磁场会使传感器的输出电压升高。


 image.png

图8.带LED指示灯的磁性接近传感器。


问题:


1. 如果改变电感值,电路响应将如何变化?

2. 为什么要降低输出失调电压?您可以在学子专区论坛上找到问题答案。


关于作者


Andreea Pop自2019年起担任ADI公司的系统设计/架构工程师。她毕业于克卢日-纳波卡理工大学,获电子与通信学士学位和集成电路与系统硕士学位。


Antoniu Miclaus现为ADI公司的系统应用工程师,从事ADI教学项目工作,同时为Circuits from the Lab®、QA自动化和流程管理开发嵌入式软件。他于2017年2月在罗马尼亚克卢日-纳波卡加盟ADI公司。他目前是贝碧思鲍耶大学软件工程硕士项目的理学硕士生。他拥有克卢日-纳波卡科技大学电子与电信工程学士学位。


文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    电流检测方案、MEMS线圈在磁传感器中的应用、磁位置传感器创新及应用、电流传感器的技术趋势、化合物半导体霍尔及磁阻传感器、高精度磁导航传感器、高精度磁场传感器、磁传感器调理电路设计等。 参与单位:赛微电子、迈铸......
    开发板上按键K2的IO口状态,控制LED灯的点亮和关闭状态。 该实验需要使用到开发板上的LED灯,按键,相关硬件电路如下: 实验步骤 打开STM32CubeIDE->File......
    就可以正常使用外部中断了。 实验步骤 打开STM32CubeIDE->File->New->STM32 Project 可以在左侧搜索框内输入芯片型号STM32MP157A进行搜索,选择对应芯片,点击......
    技术,现在已成为全球范围内为要求苛刻的测量任务提供磁阻传感器的供应商。此外,Sensitec在德国美因茨工厂设有晶圆厂。 收购方希磁科技成立于2013年,是一......
    请勿打开或接触加热单元。 6、测试完成后由于样品本身、加热单元和其他容器仍会很烫,因此在取走样品时应小心谨慎。检测完样品后请及时清理样品盘。 氧化铝水分测试仪实验步骤  测试样品1:用实验勺提取10克氧......
    化,因此在诸多场合中都逐渐被IC所替代,另外也有电感传感器类似于线圈,不过应用相较霍尔并不普遍。磁传感器的优势?霍尔元件的磁灵敏度不如磁阻传感器元件。但作为不依赖于磁性物料的磁传感器,可以......
    商提供20pcs零件镀层改为镀金层给我们进行生产实验; 8、进一步实验验证--第一步实验步骤及结果: 1)试验步骤......
    器 STM32CubeIDE开发软件 PC机 XP、Window7/10 (32/64bit) 实验步骤 打开STM32CubeIDE,配置CubeMX。 搜索框内搜索扩展板LED对应GPIO引脚PE8......
    高新区半导体芯片封装测试、薄膜生产项目,总投资额为30亿元,占地250亩,引进半导体芯片封装测试、薄膜生产线。 壕门电子传感器及应用设备生产基地项目,总投资额为10亿元,项目规划用地30亩,建设厂房、办公......
    复杂度等各不相同,需要芯片厂商结合自身经验以及应用需求,通过较高的投入、深入的研究才能掌握并设计出具有高性价比的方案。 同时,考虑到磁传感器的重要市场是车规应用,包括速度传感器、角度传感器......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>