ADALM2000实验:测量扬声器阻抗曲线

发布时间:2023-04-04  

动态扬声器的主要电气特性是电阻抗,它与频率具有函数关系。通过绘图可以将其可视化,该图称为阻抗曲线。本实验活动的目的是测量永磁扬声器的阻抗曲线和谐振频率。

本文引用地址:


背景知识


动态扬声器的主要电气特性是电阻抗,它与频率具有函数关系。通过绘图可以将其可视化,该图称为阻抗曲线。


最常见类型的扬声器是使用连接到振膜或纸盆的音圈的机电换能器。动圈式扬声器中的音圈悬挂在由永磁体提供的磁场中。当电流从音频放大器流过音圈时,由线圈中的电流产生的电磁场对永磁体的固定场作出反应并移动音圈(和纸盆)。交替电流将来回移动纸盆。纸盆的移动使空气振动,从而产生声音。


扬声器的移动系统(包括纸盆、纸盆支片、弹波和音圈)具有一定的质量和顺序。通常将这种情况模拟成由弹簧悬挂起来的简单质量块,其具有一定的谐振频率,系统在该共振频率下具有最大的振动自由度。


该频率被称为扬声器的自由空间谐振,表示为FS。在该频率下,由于音圈以最大峰峰值幅度和速度振动,因此磁场中线圈运动产生的反电动势也处于其最大值。这会导致扬声器的有效电阻抗在FS下达到最大值,称为ZMAX。对于刚好低于谐振频率的频率,当频率接近FS时,阻抗会迅速上升并且具有电感性质。在谐振频率下,阻抗具有纯阻性的特点;在谐振频率以外,随着阻抗下降,就会呈现容性的特点。阻抗在某个频率处达到最小值ZMIN,在该频率下,其行为在某些频率范围内主要(但不是完全)具有阻性的特点。扬声器的额定或标称阻抗ZNOM来自该ZMIN值。


在为多驱动扬声器和用于安装扬声器的物理机箱设计交叉滤波器网络时,了解谐振频率以及最小阻抗和最大阻抗至关重要。


模型


为了帮助您理解将要进行的测量,图1中显示了一个简化的扬声器电气模型。


12.png

图1.模型。


在图1所示电路中,一个直流电阻与由L、R和C构成的有损并行谐振电路串联,来模拟目标频率范围内扬声器的动态阻抗。


●  RDC是用直流欧姆表测量的扬声器直流电阻。在扬声器/重低音喇叭数据手册中,该直流电阻通常称为DCR。直流电阻测量值通常小于驱动器的标称阻抗ZNOM。RDC通常小于扬声器额定阻抗,并且入门级扬声器发烧友可能担心驱动器放大器会过载。但是,由于扬声器的电感(L)会随着频率的增加而增加,因此驱动放大器不太可能将直流电阻视为其负载。


●  L是通常以毫亨(mH)为单位测量的音圈电感。通常,业界标准是在频率为1000 Hz时测量音圈电感。随着频率增加到0Hz以上,阻抗会增加到RDC以上。这是因为音圈就如一个电感。因而,扬声器的整体阻抗不是恒定值,不过可以将其表示为随输入频率变化的动态曲线,我们将在进行测量时看到这一点。扬声器的最大阻抗ZMAX出现在谐振频率处(FS)。


●  FS是扬声器的谐振频率。扬声器的阻抗在FS达到最大值。谐振频率是指扬声器活动零件的总质量与运动时扬声器悬架的受力达到平衡的频率点。谐振频率信息对于防止扬声器箱出现振铃非常重要。一般而言,影响谐振频率的关键要素是活动零件的质量和扬声器悬架的刚度。我们将通风机箱(低音反射)调到FS,使两者协同工作。通常,FS较低的扬声器在低频再现方面优于FS较高的扬声器。


●  R表示驱动器悬架损耗的机械电阻。


材料:


●  主动学习模块

●  无焊试验板

●  一个100 Ω电阻(或其他类似值)

●  一个扬声器,最好是扬声器的纸盆直径大于4英寸,则其谐振频率相对较低。


RMS电压测量


硬件设置


构建图2所示电路,最好使用无焊试验板。扬声器可以放置在机箱中或机箱外。


13.png

图2.扬声器测量设置。


程序步骤


在Scopy中,启动信号发生器,然后生成具有8 V峰峰值幅度和100 Hz频率的正弦波形。


启动电压表,然后将两个通道均设置为交流(20 Hz至800 Hz)。我们可以使用电压表工具,将扬声器两端的均方根电压(通道1均方根电压)除以通过扬声器的均方根电流(通道2均方根电流),从而计算出单一频率下的Z。将通道2上的均方根电压除以R1电阻或100 Ω可计算出均方根电流。尝试将信号发生器设置为几个不同的频率,并查看扬声器上的电压以及计算得到的Z如何变化。


14.jpg

图3.VL和IL的扬声器测量设置。


15.jpg

图4.扬声器上的均方根电压。


您可以绘制计算得到的阻抗Z与频率的关系曲线。信号生成器的频率步进设置为100 Hz,可计算每个频率下的阻抗Z。扬声器阻抗较小,约等于线性区域中的直流电阻,但其在谐振频率FS处要高得多。曲线图如图5所示。您的扬声器可能与此例有所不同。


频率响应


硬件设置


为了绘制频率响应,按照图5所示进行连接。


16.jpg

图5.用于绘制频率响应的试验板连接。


程序步骤


在网络分析仪工具中,您可以进行对数扫描。将开始频率设置为100 Hz,停止频率设置为1 kHz。将相位范围设置为-30°至+30°,将幅度设置为0 dB至10 dB。


17.jpg

图6.扬声器电路的频率扫描。

文章来源于:电子产品世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    造成了失真。 分频器与喇叭怎么匹配 一、额定阻抗。音箱常见的额定阻抗有4欧、6欧、8欧、16欧等。由于目前音箱使用晶体管或集成电路功率放大器驱动的占主导地位,而这类放大器一般都不用输出变压器,所以连接喇叭的阻抗......
    而不会使音质产生失真或称“走样”,当然可以全部保留,但如果真的会令喇叭重播效果“走样”时,你会怎样处理?“灰士”,或称“保险丝”,理论上当电流经过时,它在“冷”状态时的阻抗是很低,但因......
    号比无失真的300W信号更可怕!反之,若扬声器的输入功率过大,则在所需输出声压级状态连续工作,极易被烧坏。 所以一般要求功放的额定输出功率要大于喇叭的额定输入功率。 阻抗匹配 功放阻抗与扬声器阻抗......
    声波的传播方式是一样的,通过介质的传播,人耳才能听到声音。声波可以在气体、固体、液体中传播。   下面在来说说喇叭的工作原理。喇叭是把电信号转换为声信号的一种装置,它由线圈、磁铁、纸盆等组成。由放......
    功放机和喇叭接线图_功放机怎么连接蓝牙;  功放机和喇叭接线图   越来越多年轻人都喜欢在家中安装投影设备,这样在家中观赏大片的体验是很爽的,要想观影的音效好功放机与喇叭的连接布局是少不了的。那么功放机和喇叭......
    解释上面扬声器的电感奇怪数值,下面使用 NanoVNA[2] 来对扬声器的阻抗进行测量。 在测量之前对NanoVNA进行校正。 这里展示了测量结果。 在频率为45kHz处, 对应的阻抗 大约11.5欧姆,换算......
    ;        ②CP:Chargepump ;        ③保护机制为输入信号的功率检测;④保护机制为喇叭的实时阻抗......
    乏现场感,或不能突出独唱或独奏等等,因此就有了分开频段的必要,这就要使用分频器来划分频段。 既然分频器有上述特别的作用和任务,所以它是不能随便接喇叭的。通常要将喇叭分成三组并分别接在对应的分频器输出端上:高音喇叭......
    所有的功率不能超过功放的功率,如果喇叭的过大,功放也许会被烧坏。功放上接4号接口,喇叭上COM接功放黑色接线口,另外一条线借到100V,因为功放输出是110V的。需要注意的是如果喇叭距离比较近的话要保持喇叭的相位一致,即......
    在高速信号线附近打孔换层; 11、SPDIF 信号建议全程包地处理,包地的走线间隔 300mil 以内必须有地过孔; 对于外设相关音频信号要求,以对应器件设计指南为准,如果没有强调的,可参考以下说明: 1、喇叭的SPKP......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>