浅析机器视觉系统的图像处理技术应用

发布时间:2023-08-23  

机器视觉系统大体分为图像采集和图像处理两个部分。

图像采集是工业相机与PC端通过图像采集卡相互链接,图像采集卡接收工业相机的模拟信号或数字信号,并将信号处理转换为适用于PC端的信息。


01

图像处理技术的应用

1、图像采集

视觉检测首先需要对输入的图片进行采集,根据项目需求不同,对样本要求也不会相同。合理地根据项目需求,标定合适的样本,需要通过对大量的样本进行训练以提升性能。

图像格式(像素格式):分为黑白图像和彩色图像,黑白图像的灰度等级可分为256级,即以8位来表示;而彩色图像可由RGB(YUV)3种色彩组合而成。

图像采集卡的附加功能:触发功能、灯源控制功能、基本I/O功能、相机复位功能、时序输出功能、串口通讯功能、电源输出功能等。

2、图像预处理

图像处理是用计算机对图像进行分析,以达到所需结果的技术,一般指数字图像处理,其主要内容包括图像压缩,增强和复原,匹配、描述和识别3个部分。

(1)图像增强

用于调整图像的对比度,突出图像中的重要细节,改善图像质量。有目的地强调图像的整体或局部特性,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,扩大图像中不同物体特征之间的差别。包括灰度变换法、直方图修正以及滤波等方法。

(2)图像变换

由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。因此,往往采用各种图像变换的方法,如傅立叶变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理。

(3)图像编码与压缩

图像编码压缩技术可减少描述图像的数据量,以便节省图像传输、处理时间和减少所占用的存储器容量。压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。

3、特征提取

图像分割是将图像中有意义的特征部分提取出来,有意义的特征(包括图像的颜色、形状、灰度和纹理等)有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。

虽然目前已有不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。

4、识别技术

图像识别过程实际上可以看作是一个标记过程,其主要内容是图像经过某些预处理(增强、复原)后,进行图像分割和特征提取,从而进行判决分类。

在很多场合,图像所传送的信息比其他形式的信息更丰富、真切和具体。人眼与大脑的协作使得人们可以获取、处理以及理解视觉信息,人类利用视觉感知外界环境信息的效率很高。

5、运动目标检测技术

运动目标检测主要目的是从图像中提取出运动目标并获得运动目标的特征信息,如颜色、形状、轮廓等。提取运动目标的过程实际上就是一个图像分割的过程,而运动物体只有在连续的图像序列(如视频图像序列)中才能体现出来,运动目标提取的过程就是在连续的图像序列中寻找差异,并把由于物体运动和表现出来的差异提取出来。

常用的四种方法:连续帧间差分法、背景差分法、光流法和运动能量法。

6、目标跟踪检测技术

运动目标检测是计算机视觉和视频处理领域非常重要和有效的研究课题,因为它是视频目标分类和视频跟踪活动等许多复杂过程的关键步骤。因此,从给定的视频帧序列中识别移动对象的实际形状变得相关。

然而,由于动态场景变化、光照变化、阴影的存在、伪装和引导问题等各种挑战,检测运动中物体的实际形状的任务变得很棘手。

帧间差分法是检测运动物体最常用的方法,它分别找到当前帧和前一个连续帧以及当前帧和下一个连续帧之间的差异,然后,该算法选择两个不同帧之间的最大像素强度值。接下来,将得到的差异帧划分为不重叠的块,并计算每个块的强度总和和平均值,随后,它使用阈值和强度平均值找到每个块的前景和背景像素。


02

当前面临的挑战

1、不同角度,不同外界因素(光源、颜色、相机等)影响图像采集效果。

2、同一张图在不同的背景下获取,诸多因素会影响图像的像素灰度,使图片的特征读取困难。

3、图像中的物体以二维的形式呈现,识别过程中会出现少许偏差。

4、通用的视觉检测系统,并不能适应任何环境,而要建立一个可与人的视觉系统相比的通用视觉系统是非常困难的。

5、目标之间或者目标与人之间互遮挡,尤其是在拥挤状态下,目标检测很不稳定,检测结果也很不理想,这个问题还需要进一步的研究解决。

03

提升图片识别技术的有效方法

1、图像并行处理

并行计算是提高处理速度最有效的技术之一,图像并行处理技术为提高图像处理效率提供了广阔的空间。

图像并行处理包括并行算法和多处理器并行硬件系统,图像处理并行算法的执行效率依赖于多处理器系统的硬件结构。

通常,一种并行结构只适合于一类并行算法的映射。图像并行处理结构设计面临的主要问题可以概括为两个方面:其一,图像并行处理硬件结构复杂,在实际应用中图像处理结构的开发周期长、成本高;其二,面向图像处理算法的硬件结构针对性设计方法导致图像处理平台的可重用性差,调整、扩展和升级困难。

2、数字信号处理器

数字信号处理器是由大规模或超大规模集成电路芯片组成的用来完成某种信号处理任务的处理器。数字信号处理是将信号以数字方式表示并处理的理论和技术。

数字信号处理与模拟信号处理是信号处理的子集。数字信号处理的目的是对真实世界的连续模拟信号进行测量或滤波。因此在进行数字信号处理之前需要将信号从模拟域转换到数字域,这通常通过模数转换器实现。而数字信号处理的输出经常也要变换到模拟域,这是通过数模转换器实现的。

3、专用集成电路

专用集成电路是为特定用户或特定电子系统制作的集成电路。数字集成电路的通用性和大批量生产,使电子产品成本大幅度下降,推进了计算机通信和电子产品的普及,但同时也产生了通用与专用的矛盾,以及系统设计与电路制作脱节的问题。同时,集成电路规模越大,组建系统时就越难以针对特殊要求加以改变。

4、图像采集卡

传统的摄像头系统每秒捕获并传输多个千兆像素,这些像素需要实时处理或压缩。尽管摄像头传感器技术和支持接口正在迅速发展,但是传统的基于PCIe/CPU/GPU的PC体系结构却缺乏以这种数据速率捕获,处理和存储图像所需的性能。

基于高端FPGA的图像采集卡具有超快的收发器和巨大的板载内存带宽,为实时处理和压缩提供了必要的基础设施。开放式FPGA架构允许开发人员定制其采集路径,并嵌入自己的图像处理算法和压缩块。


文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    一套完整的机器视觉系统的工作流程有哪些?;机器视觉系统组成如图所示: 机器视觉系统利用相机与镜头将被检测物品转换成图像信号,传输给视觉图像系统进行处理图像处理......
    Euresys CustomLogic模块在高速视觉图像处理的应用;随着技术的发展,工业生产过程中的高精度化、高自动化对机器视觉检测系统的信息数据存储和传输都提出了更高的要求,传输......
    机器视觉是什么_机器视觉的四大应用;  机器视觉是什么   机器视觉是一种通过计算机和数字图像处理技术,实现对物体、场景等视觉信息的自动识别、分析和处理的技术。它利用计算机处理图像、视频等数据,实现......
    系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 机器视觉是一项综合技术,包括图像处理、机械工程技术、控制、电光......
    需要用到一些数据结构和算法,如图像处理、特征提取、分类器、深度学习等,需要熟悉这些数据结构和算法。   图像处理和计算机视觉机器视觉需要用到图像处理和计算机视觉领域的一些基础知识,如图像滤波、边缘检测、形态学处理、目标......
    机器视觉中常用的光源影响机器视觉技术速度的因素;中常用的在系统中,起着至关重要的作用。它是影响系统图像水平的重要因素。好的照明设计能够使图像中的目标信息与背景信息得到最佳分离,从而大大降低图像处理......
    越受到人们的重视。机器视觉技术涉及计算机科学、人工智能、信号处理图像处理机器学习、光学、自动化等多个领域。机器视觉通过光学设备和传感器获取到目标物体的图像信息,然后将图像信息转化成数字化信息,进而通过计算机分析数据显示在电子屏幕上或者通过控制单元指导机器......
    技术在工业生产中能够起到的作用。 典型应用之一“物体分拣” 在机器视觉应用环节中,物体分拣应用是建立在识别、检测之后的一个环节,通过机器视觉系统将图像进行处理,结合机械臂的使用实现产品分拣。举个......
    系统的性能和效率。 实时性能和速度:随着自动化系统的要求越来越高,机器视觉需要实时性能和高速度。为了实现这一点,新的算法和技术被提出来,包括硬件加速和专用处理器的使用,以提高图像处理......
    机器视觉是什么?如何去理解?; 是一种计算机技术,旨在使计算机系统能够模仿人眼和大脑的功能,识别、分析和理解图像和视频。机器视觉是的一个分支,涉及图像处理、模式识别、计算机视觉、计算......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>