变速箱是汽车动力总成的重要组成部分,一旦出现异常情况,可能导致严重事故。而螺栓的紧固力对于保持变速箱的结构完整和正常运行至关重要,没有经过完整涂胶固定的螺栓可能会松动甚至丢失,存在安全隐患。
因此,在汽车变速箱装配时,拧紧螺栓前,需要检测螺栓是否涂胶、有无断胶等情况。
01
检测难点
•生产环境紧凑
汽车装配流水线较长,变速箱的组装仅为其中的一个环节。在这种紧凑的生产环境中,若加入大型视觉检测系统,可能会因为设备安装和调试的周期较长,拖慢整条产线的进度。
•缺陷形态多变
螺栓的断胶异常可能以任意形态随机出现在任意位置,使用传统算法难以预测未知的异常涂胶情况。
•产品良率较高
若采用深度学习算法,则需要充足的高质量样本。汽车行业良率较高,短时间内难以收集到足够数量的缺陷样本。
•检测指标严苛
为了严格把控质量和成本,客户对检测精度提出了高要求:必须准确无误地检出所有涂胶异常的螺栓,不能放过任何一点轻微断胶的情况,即过检、漏检指标均为0。
02
解决方案
采用EVS-SC200深度学习智能相机的非监督分割算法,既能够更快速地完成部署,又能保证检测性能和精细程度。
EVS-SC200深度学习智能相机 ▲
深度学习智能相机
集AI算法、软件、硬件于一体,零代码引导式操作,开箱即可掌握,缩短部署周期,最快短至1天。
擅长解决随机多变的断胶形态问题,可检出细小、低对比度的涂胶异常,效果优于传统算法。
非监督分割算法
支持正样本模型,省去收集缺陷样本的时间,仅使用良品图进行训练,即可通过对比缺陷图与良品图不同的地方,检测出螺栓未涂胶或断胶的异常情况,并进行实时报警。
考虑到对于检测精细程度的要求,故应用阿丘自研的最高精度的分割算法,做像素级的缺陷检测。
03
项目成果
实现螺栓涂胶异常的100%稳定检出,达成过检、漏检均为0的指标要求。
有效代替了该环节100%的目检人员,确保螺栓在拧紧前不存在涂胶异常,避免客诉。
该方案在批量复制阶段,1天即可完成部署。
04
EVS-SC200 不止于简单
集AI算法、软件、硬件于一体,无门槛,轻便简单,有效解决简单至复杂的OCR、装配验证、计数、瑕疵检测、分类等问题,赋能生产及组装工艺过程管控,助力企业高良率生产。
无需精细调参,无需软件集成,快速构建解决方案,助力汽车、医药&食品包装等行业智能化升级。