48.1 初学者重要提示
学习本章节前,务必优先学习第47章,需要对FMC的基础知识和HAL库的几个常用API有个认识。
为什么要做IO扩展,不是已经用了240脚的H743XIH6吗?因为开发板使用了32位SDRAM和RGB888硬件接口,消耗IO巨大,所以必须得扩展了。
扩展的32路高速IO非常实用,且使用简单,只需初始下FMC,32路IO就可以随意使用了。当前的扩展方式只支持高速输出。
FMC总线扩展32路高速IO理解成GPIO的ODR寄存器就很简单了,其实就是一个东西。
FMC扩展IO是对地址0x60001000的32bit数据空间的0和1的操作。GPIOA的ODR寄存器是对地址 0x40000000 + 0x18020000 + 0x14 空间的操作。但只能操作16个引脚。
使用总线的优势就在这里了,相当于在GPIOA到GPIOK的基础上,又扩展出GPIOL和GPIOM。
#define PERIPH_BASE ((uint32_t)0x40000000)
#define D3_AHB1PERIPH_BASE (PERIPH_BASE + 0x18020000)
#define GPIOA_BASE (D3_AHB1PERIPH_BASE + 0x0000)
#define GPIOA ((GPIO_TypeDef *) GPIOA_BASE)
typedef struct
{
__IO uint32_t MODER; /*!< GPIO port mode register, Address offset: 0x00 */
__IO uint32_t OTYPER; /*!< GPIO port output type register, Address offset: 0x04 */
__IO uint32_t OSPEEDR; /*!< GPIO port output speed register, Address offset: 0x08 */
__IO uint32_t PUPDR; /*!< GPIO port pull-up/pull-down register, Address offset: 0x0C */
__IO uint32_t IDR; /*!< GPIO port input data register, Address offset: 0x10 */
__IO uint32_t ODR; /*!< GPIO port output data register, Address offset: 0x14 */
__IO uint16_t BSRRL; /*!< GPIO port bit set/reset low register, Address offset: 0x18 */
__IO uint16_t BSRRH; /*!< GPIO port bit set/reset high register, Address offset: 0x1A */
__IO uint32_t LCKR; /*!< GPIO port configuration lock register, Address offset: 0x1C */
__IO uint32_t AFR[2]; /*!< GPIO alternate function registers, Address offset: 0x20-0x24 */
} GPIO_TypeDef;
48.2 FMC扩展IO硬件设计
扩展IO涉及到的知识点稍多,下面逐一为大家做个说明。
48.2.1 第1步,先来看FMC的块区分配
注,这个知识点在前面第47章的2.3小节有详细说明。
FMC总线可操作的地址范围0x60000000到0xDFFFFFFF,具体的框图如下:
从上面的框图可以看出,NOR/PSRAM/SRAM块区有4个片选NE1,NE2,NE3和NE4,但由于引脚复用,部分片选对应的引脚要用于其他功能,而且要控制的总线外设较多,导致片选不够用。因此需要增加译码器。
48.2.2 第2步,增加译码器及其地址计算
有了前面的认识之后再来看下面的译码器电路:
SN74LVC1G139APWR是双2-4线地址译码器,也就是带了两个译码器。原理图上仅用了一个。下面是139的真值表和引脚功能:
通过上面的原理图和真值表就比较好理解了,真值表的输出是由片选FMC_NE1和地址线FMC_A10、FMC_A11控制。
FMC_NE1 输出低电平:
FMC_A11(B),FMC_A10(A) = 00时,1Y0输出的低电平,选择的是OLED。
FMC_A11(B),FMC_A10(A) = 01时,1Y1输出的低电平,选择的是74HC574。
FMC_A11(B),FMC_A10(A) = 10时,1Y2输出的低电平,选择的是DM9000。
FMC_A11(B),FMC_A10(A) = 11时,1Y3输出的低电平,选择的是AD7606。
然后我们再计算译码器的地址,注意,这里地址的计算都是按照FMC的32bit访问模式计算的,因为我们的V7程序中是将NE1对应的FMC配置为32bit模式了。
具体FMC的32bit访问模式,16bit访问模式和8bit访问模式的区别在第47章的2.4小节有详细讲解。
32bit模式下,我们计算A10和A11的时候,实际上需要按HADDR12和HADDR13计算的。
如果来算NE1 + HADDR12 + HADDR13的四种组合地址就是如下:
NE1 + HADDR13 + HADDR12 = 0x6000000 + 0<<13 + 0<<12 = 0x60000000
NE1 + HADDR13 + HADDR12 = 0x6000000 + 0<<13 + 1<<12 = 0x60001000
NE1 + HADDR13 + HADDR12 = 0x6000000 + 1<<13 + 0<<12 = 0x60002000
NE1 + HADDR13 + HADDR12 = 0x6000000 + 1<<13 + 1<<12 = 0x60003000
这样一来,原理图里面给的地址就对应上了。同理如果配置为16位模式和8位模式,大家应该也都会计算了。
48.2.3 第3步,FMC的IO扩展部分
先来看下IO扩展的原理图实现,如果不太了解FMC的通信时序和数字逻辑芯片的使用,可能会比较懵,下面逐一为大家说明。
48.2 FMC扩展IO硬件设计
扩展IO涉及到的知识点稍多,下面逐一为大家做个说明。
48.2.1 第1步,先来看FMC的块区分配
注,这个知识点在前面第47章的2.3小节有详细说明。
FMC总线可操作的地址范围0x60000000到0xDFFFFFFF,具体的框图如下:
从上面的框图可以看出,NOR/PSRAM/SRAM块区有4个片选NE1,NE2,NE3和NE4,但由于引脚复用,部分片选对应的引脚要用于其他功能,而且要控制的总线外设较多,导致片选不够用。因此需要增加译码器。
48.2.2 第2步,增加译码器及其地址计算
有了前面的认识之后再来看下面的译码器电路:
SN74LVC1G139APWR是双2-4线地址译码器,也就是带了两个译码器。原理图上仅用了一个。下面是139的真值表和引脚功能:
通过上面的原理图和真值表就比较好理解了,真值表的输出是由片选FMC_NE1和地址线FMC_A10、FMC_A11控制。
FMC_NE1 输出低电平:
FMC_A11(B),FMC_A10(A) = 00时,1Y0输出的低电平,选择的是OLED。
FMC_A11(B),FMC_A10(A) = 01时,1Y1输出的低电平,选择的是74HC574。
FMC_A11(B),FMC_A10(A) = 10时,1Y2输出的低电平,选择的是DM9000。
FMC_A11(B),FMC_A10(A) = 11时,1Y3输出的低电平,选择的是AD7606。
然后我们再计算译码器的地址,注意,这里地址的计算都是按照FMC的32bit访问模式计算的,因为我们的V7程序中是将NE1对应的FMC配置为32bit模式了。
具体FMC的32bit访问模式,16bit访问模式和8bit访问模式的区别在第47章的2.4小节有详细讲解。
32bit模式下,我们计算A10和A11的时候,实际上需要按HADDR12和HADDR13计算的。
如果来算NE1 + HADDR12 + HADDR13的四种组合地址就是如下:
NE1 + HADDR13 + HADDR12 = 0x6000000 + 0<<13 + 0<<12 = 0x60000000
NE1 + HADDR13 + HADDR12 = 0x6000000 + 0<<13 + 1<<12 = 0x60001000
NE1 + HADDR13 + HADDR12 = 0x6000000 + 1<<13 + 0<<12 = 0x60002000
NE1 + HADDR13 + HADDR12 = 0x6000000 + 1<<13 + 1<<12 = 0x60003000
这样一来,原理图里面给的地址就对应上了。同理如果配置为16位模式和8位模式,大家应该也都会计算了。
48.2.3 第3步,FMC的IO扩展部分
先来看下IO扩展的原理图实现,如果不太了解FMC的通信时序和数字逻辑芯片的使用,可能会比较懵,下面逐一为大家说明。
/*
*********************************************************************************************************
* 函 数 名: HC574_ConfigGPIO
* 功能说明: 配置GPIO,FMC管脚设置为复用功能
* 形 参: 无
* 返 回 值: 无
*********************************************************************************************************
*/
static void HC574_ConfigGPIO(void)
{
/*
安富莱STM32-H7开发板接线方法:4片74HC574挂在FMC 32位总线上。1个地址端口可以扩展出32个IO
PD0/FMC_D2
PD1/FMC_D3
PD4/FMC_NOE ---- 读控制信号,OE = Output Enable , N 表示低有效
PD5/FMC_NWE -XX- 写控制信号,AD7606 只有读,无写信号
PD8/FMC_D13
PD9/FMC_D14
PD10/FMC_D15
PD14/FMC_D0
PD15/FMC_D1
PE7/FMC_D4
PE8/FMC_D5
PE9/FMC_D6
PE10/FMC_D7
PE11/FMC_D8
PE12/FMC_D9
PE13/FMC_D10
PE14/FMC_D11
PE15/FMC_D12
PG0/FMC_A10 --- 和主片选FMC_NE2一起译码
PG1/FMC_A11 --- 和主片选FMC_NE2一起译码
XX --- PG9/FMC_NE2 --- 主片选(OLED, 74HC574, DM9000, AD7606)
--- PD7/FMC_NE1 --- 主片选(OLED, 74HC574, DM9000, AD7606)
+-------------------+------------------+
+ 32-bits Mode: D31-D16 +
+-------------------+------------------+
| PH8 FMC_D16 | PI0 FMC_D24 |
| PH9 FMC_D17 | PI1 FMC_D25 |
| PH10 FMC_D18 | PI2 FMC_D26 |
| PH11 FMC_D19 | PI3 FMC_D27 |
| PH12 FMC_D20 | PI6 FMC_D28 |
| PH13 FMC_D21 | PI7 FMC_D29 |
| PH14 FMC_D22 | PI9 FMC_D30 |
| PH15 FMC_D23 | PI10 FMC_D31 |
+------------------+-------------------+
*/
GPIO_InitTypeDef gpio_init_structure;
/* 使能 GPIO时钟 */
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOE_CLK_ENABLE();
__HAL_RCC_GPIOG_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOI_CLK_ENABLE();
/* 使能FMC时钟 */
__HAL_RCC_FMC_CLK_ENABLE();
/* 设置 GPIOD 相关的IO为复用推挽输出 */
gpio_init_structure.Mode = GPIO_MODE_AF_PP;
gpio_init_structure.Pull = GPIO_PULLUP;
gpio_init_structure.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
gpio_init_structure.Alternate = GPIO_AF12_FMC;
/* 配置GPIOD */
gpio_init_structure.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_7 |
GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_14 |
GPIO_PIN_15;
HAL_GPIO_Init(GPIOD, &gpio_init_structure);
/* 配置GPIOE */
gpio_init_structure.Pin = GPIO_PIN_7 | GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10 |
GPIO_PIN_11 | GPIO_PIN_12 | GPIO_PIN_13 | GPIO_PIN_14 |
GPIO_PIN_15;
HAL_GPIO_Init(GPIOE, &gpio_init_structure);
/* 配置GPIOG */
gpio_init_structure.Pin = GPIO_PIN_0 | GPIO_PIN_1;
HAL_GPIO_Init(GPIOG, &gpio_init_structure);
/* 配置GPIOH */
gpio_init_structure.Pin = GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_11 | GPIO_PIN_12
| GPIO_PIN_13 | GPIO_PIN_14 | GPIO_PIN_15;
HAL_GPIO_Init(GPIOH, &gpio_init_structure);
/* 配置GPIOI */
gpio_init_structure.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_6
| GPIO_PIN_7 | GPIO_PIN_9 | GPIO_PIN_10;
HAL_GPIO_Init(GPIOI, &gpio_init_structure);
}
48.3.2 FMC扩展IO时钟源选择
使用FMC可以选择如下几种时钟源HCLK3,PLL1Q,PLL2R和PER_CK:
我们这里直接使用HCLK3,配置STM32H7的主频为400MHz的时候,HCLK3输出的200MHz,这个速度是FMC支持的最高时钟,正好用于这里:
48.3.3 时序配置(重要)
这里要补充两个重要的知识点,74HC574的CP端接收到上升沿触发到Qn输出的时间参数:
通过时序图和对应的参数要了解到以下几点:
tpd传输延迟在这里等效于tPHL和tPLH。
V7开发板的74HC574有三片是3.3V供电,另外一片是5V供电。参数表格里面没有给3.3V供电时的参数,也没有最小值。
了解了74HC574,再来看SN74HC02:
通过时序图和对应的参数要了解到以下几点:
tpd传输延迟在这里等效于tPHL和tPLH。
-
tt过渡时间等效于tr上升沿时间和tf下降沿时间。
相关文章