测力螺栓结构及手持式测量设备设计与实现方案

发布时间:2023-04-07  

  引言

  中大型结构体设 计 中,螺栓连接应用非常广泛,且 地 位十分重要。这是由于螺栓在载荷作用下会导致断裂等 失效故障,引起连接失效,影响产品整体寿命和可靠性,甚 至引起严重事故。但 对 运 动 部 件 而 言(如 发 动 机、风 电 机 组、风电叶片、火箭箭 体 等),螺栓承受着较大的变化冲击 载荷,所处的力学环境条件和边界条件异常复杂。这就导 致动载荷情况下的疲劳强度计算、校核往往具有一定的局 限性,反而实际测量 分 析 意 义 更 大。但 事 实 上,很 少 采 用 直接螺栓受力分析,之所以无法实时分析螺栓受力,是 由 于多数情况下,很难直接获取工作状态下螺栓两个端面的 力载荷[2]。


  为解决这一问题,实时获取工作状态下的螺栓力载荷, 本文提出一种测力螺栓结构及手持式测量设备设计与实现 方法,通过较为简便的方式,在高强螺栓内增加感知应变 片,不改变螺栓原有安装方式,不增加串联式力载荷传感器,比较真实地实时记录工作状态下螺栓连接端的力载荷。这种直接把螺栓作为测力元件传感器的方法主要以美国 STRAINSERT测力螺栓为代表,国内目前主要以研究所、高 校 为主要研究单位,尚未形成有影响力的系列产品。本文描 述的测力螺栓设计方案在精度与产品化方面同STRAINSERT 测力螺栓尚有一定差距,但采用本方法设计的测力螺栓应 用结果表明,该测力螺栓及测量设备可以方便的用于结构 体弯矩载荷试验中载荷测量及风电叶片轮毂螺栓状态监 测,具有一定的工程应用价值。


  1 测力螺栓设计

  1.1 结构设计

  测力螺栓结构图如图1所示。产品机械结构由螺栓、 应变片、插头等组成。该结构的工作原理是:螺栓两个连接 端面受力后,使螺栓本体结构产生拉伸形变;该形变使应变 片贴装部位同时受到拉伸作用,产生形变;形变被应变片感 知,进而引起应变片电阻线性变化[3];应变信号通过航空插 头送至螺栓外部,被测试设备采集记录。

poYBAGLL5_SAaVEWAACe8--M6sk811.png

  螺栓侧壁上贴装有四处应变片,其中两片为感知应变 片,两片为温度补偿应变片[4]。4片应变片组成全桥,满足 桥路平衡的同时,既提高测试精度,又实现温度和线路补 偿。应变片结构图见图2所示。

poYBAGLL5_qAGfDRAAC5KPBrxv4551.png

  1.2 强度校核计算

  选用8.8级螺栓,其抗拉强度为800MPA,屈服强度为 640MPA[5],建立有限元模型对螺栓强度进行校核。在 线 弹性区内考核测力螺栓的强度变化,对测力螺栓进行拉伸、 弯曲受力状态下的强度变化分析。


  当被连接件受横向载荷时,在螺栓预紧力作用下,被连 接件之间产生摩擦力来抵抗横向载荷,而螺栓不直接承受 剪切,预紧力则可以折算入螺栓所受的拉力中。当被连接 件所受的横向载荷为 Q 时,为产生足够的摩擦力抵抗 Q, 其所需要的最小预紧力FP 为[6]:

poYBAGLL6ACAcWewAAF4H9E7BZo511.png

  在螺栓与试件相接触的端面施加均布载荷,其合力为 6100N,计算结果如图3、图4所示。最大的应力均出现在 螺栓根部,主要原因是因为该部位存在较大的切应力以及 正应力,并且截面发生突变引起的应力集中。测力螺栓最 大等效应力为275MPA,此时测力螺栓受力远小于螺栓屈 服强度,满足受力要求。

poYBAGLL6AiAe4a9AAMxAO64ZaY859.png

  位移量云图计算结果中的最大位移量除以螺栓长度, 获得的最大应变量为283με,该结果将作为测量设备量程 选择依据。2 测量设备设计 测力螺栓测量设备结构如图5所示。主要由信号适配 电路、单 片 机、人 机 交 互、存 储 单 元、电 源 管 理 等5部 分 组 成。信号适配电路包括前级滤波、仪表放大器、调零及增益 电路、低通滤波、AD转换、DA 调零输出等电路。单片机采 用STM32L151,实现信号采集、数据记录、电源管理、人机 交互、数据传输等控制。人机交互主要包括用于操作输入 的按键、用于输出的显示屏及用于数据传输的 USB接口。存储单元为单片 EEPROM 存储芯片,完成数据记录功能。电源管理包括内置可充电锂电池、充 电 电 路、电 量 检 测 电 路、稳压电源、桥压供电用对称恒压源等,完成设备及传感 器供电、电量检测等功能。

pYYBAGLL6A2ARkRGAAEFBEJBzOM983.png

  2.1 信号适配电路

  信号适配电路完成惠斯通电桥差分信号向数字信号的 转换,包括放大、调零、滤波、模数转换等功能。


  1)仪表放大器及前级滤波

  惠斯通电桥检测出的全载荷应变量对应的电压变化量 一般为几十毫伏[7],因此在信号适配电路的前端需要放置 专门的高增益仪表放大器。本文采用的是低噪音、低增益 漂移的仪表 放 大 器 AD8428。AD8428是 AD 公 司 出 产 的 2000倍固定增益超低噪音仪表放大器,其电压噪音低达 1.3NV/√Hz,增益准确度达到0.05%,非常适合本方案信 号小、放大倍数高、稳定度高的需求。AD8428的外围电路 非常简单,仅需少量电阻、电容、电感即可实现。


  由于应变片组成的惠斯通电桥与仪表放大器之间通过 较长电缆传输信号,因此难免存在噪音的引入。另外测力 螺栓多数应用在较为复杂的工作环境中,外部环境干扰也 会通过电缆辐射进入信号中。测力螺栓的信号在 MV 级, 属于小信号,为减少干扰影响,在仪表放大器前应加入滤波 电路。信号传输线缆感应到的一般为中高频噪音,故在此 选择 RC低通滤波器。低通滤波器的截止频率选择过高, 则部分中频噪音 无 法 滤 除;选 择 过 低,则动态响应过程太 慢,影响信号分析[8]。依据弯矩载荷试验信号频率特点,方 案中选择低 通 截 止 频 率 为 3.3KHz。C31 和 R31、C33 和 R33分别构成两个 RC低通滤波器,滤除S+、S-信号上的 噪音;C32电容的作用是消除共模噪音。


  2)调零电路

  调零电路用于在惠斯通电桥未处于平衡状态时,通过 信号补偿的方式使当前电信号处于零点附近。惠斯通电桥 的测量电路常用的配平调零方式有两种,一种是在桥路电 路上并联可调电阻,通过改变电阻阻值配平桥路,该方式多 用于手动调零;一种是在电路放大器中利用加法电路原理, 为偏置信号叠加反相电信号,该方式可用 DA 电路实现,因 此可用于系统自动调零。测力螺栓测量设备采用 STM32 单片机内 置 DA 电 路 生 成 0~3.3 V 模 拟 电 压 信 号,经 AD706运放转换成-5~+5V 调零电压信号。


  转换后的调零电压信号送至仪表放大器的VREF引 脚, 根据仪表放大器的输出公式:

pYYBAGLL6BSAeBNmAAAjg_F84os853.png

  设定 DA,使VREF输出与调零前VOUT相当的反相信号,即 可将VOUT调至零点附近。

  3)低通滤波电路

  同前级滤波电路不同,放大器后端、AD 前端的低通滤 波起到滤除分析频率外的混叠成分、消除放大器电路噪音 的作用。根据弯矩载荷信号的频率范围,此处的低通滤波 电路的截止频率设定至 Hz级,因此本方案采用低频超稳 态高精度运放 AD706,搭建4阶低通滤波器。AD706具有高直流精度,最大偏置电压仅100μV,峰 峰噪音仅0.5μV,10Hz以内的工作特性尤其出色。上述 4阶低通滤波器设计截止频率约为1Hz。


  4)AD模数转换器

  本方 案 的 模 数 转 换 器 采 用 的 是 24 位 AD 芯 片 CS1237。CS1237是一款高精度、低功耗 SIGMA-DELTA模数 转换芯片,一路差分输入通道,内置两阶 SIGMA-DELTA调制 器,通过低噪音放大器结构实现PGA 放大,放大倍数可选:1、2、64、128。在 PGA=128时,有效分辨率可达20位。


  CS1237采用两线制 SPI接 口,其 中 DOUT管 脚 是 双 向 管脚,需要注意时序操作时是读取寄存器还是写入寄存器。


  2.2 单片机

  单片机采用的STM32系列 ARM 内核低功耗控制器 STM32L151。STM32系列单片机具有丰富的片上资源, 集成度高,接口丰富,功耗控制优秀,可大幅缩减硬件设计 投资和周期[9-12]。STM32L151芯片是32位CORTEx-M3内 核,32 MHz工 作 频 率,83 个I/O 口,128KFLASH存 储 空 间,24个通道12位 ADC,2通道12位 DAC,1个 USB2.0 接口,3个 USART 串 口,2个 SPI接 口,2个I2 C 接 口,10 个定时器,2个看门狗定时器。资 源 非 常 丰 富,正 好 能 够 满足 设 备 对 I/O 接 口、DAC、SPI接 口、USB2.0 接 口 的 需求。


  2.3 人机交互设计

  测力螺栓测量设备的人机交互包括3个部分,一是键 盘输入设计;二是液晶显示屏;三是 USB数据传输。

  1)键盘输入设计

  测量设备的键盘采用薄膜式按键设计,贴在手持式机 壳面板上,由 FPC1.0MM-10P接插件引入机壳内,压 接 在 电路板插座上。键盘按键共有17个,分别是“0~9”、“↑”、 “↓”、“→”、“←”、“。”、开关键、“MENU”菜单键。按键形成 阵列组合后经驱动送至单片机的I/O 口,由单片机扫描端 口识别按键操作。

  2)液晶显示屏

  显示设备采用2.4寸液晶显示屏,分辨率320×240像 素,TTL电平串口接口控制,串口控制波特率最大可设置 至115200BPS,显示颜色65K色。

  3)USB数据传输

  USB 数据传输接口采用 STM32L151 芯 片 内 置 USB2.0接口,工作在虚拟串口模式[13]。连接计算机后,用 户可在电脑上操作数据读取程序,从测量设备存储器中读 取既往记录数据。


  2.4 存储单元

  由于测力螺栓测量设备的采样率仅1~20Hz,数据量 不大,按容量计算公式计算:

poYBAGLL6BuAIEa2AAA9di6kJRM429.png

  式中:ME 为 总 数 据 容 量;S采 为 采 样 率(按 最 大 20 Hz计 算);T为采样时间(按工作5小时计算);2代表每次采样2 字节数据。


  数据量为 M 级,因此不用选择 FLASH存储芯片、SD 存 储卡等常用大容量存储单元。但是 STM32L151芯片内的 128KFLASH存储空间是 不 够 的。方 案 选 择 单 片 EEPROM 存储芯片24LC1025,该芯片为I2 C接口,1024KB容量,典 型工况3MS页写入时间,超100万次擦除写入寿命,写电 流5MA,读电流450μA。


  2.5 电源管理

  测力螺栓测量设备的电源管理分为3个部分:充电电 路、工作稳压电路及桥压供电电路。

  1)充电电路

  充电电路主要由电池充电管理及电量检测管理两部分 组成。电池充电电路选用具有 USB接口兼容的线性电池管 理芯片 TP4056。TP4056采用8管脚小外形封装,充电电 流可达1A,具有软启动限制浪涌电流、输出端防反灌功 能,可自动再充电,十分适合于便携式测试领域。本方案充 电电流设置为500MA。电量检测管理采用的是低功耗四通道电压监测集成电 路CN1185,按电池电压线性监测电池容量。CN1185消耗 电流仅为7.3μA,比较器翻转阈值精度2.5%,输出端可以 驱动LED或与微处理器I/O 口直接连接,非常合适于监测 电池电压。

  2)工作稳压电路

  工作稳压电路主要负责将电池电压转换成工作用的各 直流电压。稳压电路第一 级 是 用 LT3471构成的升降压电路,提 供±8 V 电 压,该电压供桥压及二级稳压电压使用。LT3471是 一 款 仅 3 MM ×3 MM DFN 封 装 的 双 通 道 1.3A、1.2MHz升压/负输出转换器,具有体积小,高输入 输出电压的特点,外围器件相对较少。稳压电路第二级是产生各电路工作电压,主 要 为:由 LM7805生成的5V 电压;由 LM7905生成的-5V 电压;由 LM1117-3.3 生 成 的 3.3 V 电 压;由 REF03 生 成 的 2.5V基准电压等。

  3)桥压供电电路

  测力螺栓的传感器输出信号具有信号小、易受干扰的 特点,且应变信号的输出与桥压品质有直接关系,因此桥压 供电电路的选择至关重要。本方案采用运放 AD822搭建一种对称恒压源桥压供 电电路,保证桥压输出恒压稳定。


  3 软件设计

  测力螺栓测量设备软件主要是安装于单片机内的嵌入式 系统软件,用于实现测量设备信号采集、桥路平衡调零、电源管 理、数据存储、数据传输、界面显示、键盘响应等功能。


  软件采用 C代码编程,编译环境为 MDK5。程序流程 如图6所示。程序起始是初始化,初始化内容包括:初始化时钟、SPI 端口、UART 串 口、I/O 口、CS1237模 数 转 换 器、内 置 DA 模块、USB接口、显示屏等[14]。


  初始化完成后,程序首先检测是否连接 USB。连接的 前提是测量设备与计算机之间已连接 USB线缆,计算机主 机已经向STM32单片机内置 USB模块发起并完成枚举过 程。枚举完成后,计算机主机完成驱动加载,并 与 STM32 单片机建立数据交换连接。程序检测到连接建立标志,则 认为 USB已经连接,软件进入数据传输程序,显示屏显示 通讯界面,开始数据传输流程。程序未检测到连接建立标 志,则认为 USB未连接,软件将进入功能选择程序,显示屏 显示功能选择界面,并提供灵敏度设置、调零程序、报警阈 值设置、进入采集状态和关机等5项功能选择。


  灵敏度设置界面用于设置当前测力螺栓传感器编号、 灵敏度系数,以保证程序正确计算载荷力值。


  调零程序功能用于进入调零程序,进入后设备将自动 调零,并显示调零进度、调零结果、当前零线等。调零程序 采用逐次逼近法选择合适的 DA 输出值,将当前 AD 采集 值调整至零点附近。


  报警阈值设置功能用于设定载荷力值的报警上下限。报警上限用于提示用户载荷过大超标,应及时采取相应措 施;报警下限用于提示用户当前载荷过小,可能发生螺栓松 动、断裂等故障;报警上限应大于报警下限。


  进入采集状态功能选择后,软件将启动 AD 进行数据 采集,将采集到 AD原码经灵敏度换算后折算成力值,力值 数据一方面保存在数据缓存区中,一方面显示在数据采集 界面上。数据缓存区是存储器的页面容量大小,数据缓存 区满,则向存储器新的一页中写入当前缓存区数据,然后缓 存区清零,准备写入新的数据[15]。数 据 显 示 界 面 中,如 果 当前数据未超限,则以白色字体显示采集力值;如果当前数 据超上限,则以红色字体显示采集力值;如果当前数据超下 限,则以蓝色字体显示采集力值。


  各功 能 界 面 中,按 下 相 应 按 键,程 序 则 执 行 相 应 的 返 回、输入、确认、关机等操作。

pYYBAGLL6CKAOIXKAAHtaZvapwc769.png

  4 标校与测试

  4.1 标校

  测力螺栓及测量设备设计完成后,首先进行测力螺栓 的标校。标校方 法 如 图7所 示。将标准力传感器与测力 螺栓串联,施加拉力载荷。施加力载荷通过设计好的工装 实现,以消除方位对测量结果的影响[16]。同时测力螺栓连 接手持式测量设备测试应变数据(手持式测量设备已经过 标准 应 变 仪 标 定 )。力传感器型号为 BK-2B(灵 敏 度 2.412MV/V,7.96KN/MV),由微应变测试仪 DH3842读 取载荷应变量。

poYBAGLL6G2AMVh-AAL3IFBHLV8857.png

  首轮共选取5套测力螺栓样机进行标校,图8为其中 4#测力螺栓标校数据与标准载荷数据对比图。

poYBAGLL6CiAalkDAACeJVhvsxs188.png

  测试 结 果 表 明,5 套测力螺栓的灵敏度系数在区 间 7.6~8.2之间,一致性较好,最大误差范围4%~6%。标 定精度在预期范围内。

  4.2 稳定性测试

  测力螺栓的主要用途在于监测螺栓预紧力随蠕变的 衰减情况,力值测试的稳定性是主要参数之一。因此标校 后随即进行了零位测试和不同力值下螺栓的稳定性测试。测试的零位如图9所示,测试时间为21.8MIN,轴 力 测试螺栓的零位较为稳定。

pYYBAGLL6C6AH_hGAACyB79jm-Y565.png

  在不同力值情况下测试了螺栓的稳定性,如 图10所 示。通过2.5H的测试,轴力测试螺栓的力值稳定。


  4.3 强度测试

  2016年3月在北京普汇材料测试有限公司开展了测 力螺栓拉伸试验,并测试了测力螺栓最大承载能力。

  根据测试结果,开设中心孔的测力螺栓最大承载力为 原 有 螺 栓 的 91.35%,断裂位置为未旋合螺纹处。参 照 GJB3375-1998《普通螺纹螺栓、螺钉通用规范》,测力螺栓 承载能力满足技术指标要求。

poYBAGLL6DSAXE2bAACuvTDJYM0518.png

  5 结论

  本文提出了一种轴力测量螺栓及其手持式测试设备 的设计方案及实现方法,直接通过安装在螺栓本体上的应 变片得到螺栓的轴向力值,克服了现有螺栓带有通孔、线 路缠绕、影响装 配 的 问 题,具 有 灵 敏 度 高、精 度 高 的 特 点。配合手持式测量设备,可以方便的应用于大型结构、武器 装备、风电、高铁等领域,实现静/动力试验界面力测量、螺 栓松动监测、轴力测量、螺栓预紧力测量、断裂过程分析等 测量与测试功能,具有较高的经济和社会效益。


  但当前设计过程中也发现,由于螺栓测试片安装空间 有限,贴装应变片困难,安装工艺效率较低;力传导结构有待优化,测试灵敏度和精度有待提升。后续将在前期研究 的基础上,尝试改变力传导结构,以提高灵敏度及测量精度。同时,优化产品设计,规范安装工艺及制作流程,以进 一步拓展实际应用。

文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    鲁尔锁定卡圈抗扭力旋开扭矩测试仪;随着医疗行业的不断发展、人们对自身健康重视程度的逐渐提高,更加高效、安全的医用注射器具被不断研发。预灌封注射器是一种新型的药品包装形式,主要......
    这两组脉冲波的前后沿的相位差就可以计算出弹性轴所承受的扭矩量。该方法的优点:实现了转矩信号的非接触传递,检测信号为数字信号;缺点:体积较大,不易安装,低转速时由于脉冲波的前后沿较缓不易比较,因此低速性能不理想。 扭矩测试......
    线束测试仪怎么选型号的参数(线束测试仪选型要求);现在市面上有很多不同品牌的线束测试仪,不同研发商所生产的线束测试仪器不仅在价格上有较大的差异,而且仪器的参数配置,性能要求等也都是完全不同的。安泰电子提醒大家在选购线束测试仪......
    了众多相关企业以及从业人士前来了解参观行业最新发展趋势。 作为国内领先的测试仪器综合服务商,君鉴科技携带光相关中高端测试仪器及成套测试解决方案亮相IFOC讯石研讨会,为与会的光通信行业硬科技企业研发测试......
    是说,产品的绝缘结构的设计不但要考虑额定电压而且要考虑产品使用环境的内部过电压。耐压测试就是检测产品绝缘结构是否能够承受电力系统的内部过电压。UL认证耐压测试设备要求对600 V以下的产品,美国和加拿大标准中通常会要求耐压测试仪器......
    作原理及组成介绍如下: 1、电缆故障测试仪的基本原理 根据故障的探测原理,当仪器处于闪络触发方式时,故障点瞬时击穿放电所形成的闪络回波是随机的单次瞬态波形,因此测试仪器应具备存储的功能,可捕......
    说明转子已经损坏,需要进行更换或维修。   2.测量转子的磁极   使用磁极检测仪或万用表等测试仪器,测量转子的磁极。将测试仪器的感应头放置在转子表面,观察测试仪器的指针或显示屏是否有反应。如果......
    e络盟扩充测试仪器与工具产品阵容, 为工程师的电子设计、测试和维护工作提供支持;e络盟扩充测试仪器与工具产品阵容, 为工程师的电子设计、测试和维护工作提供支持 e络盟可快速供货3.7万种测试仪器......
    未来十年,电子测试仪器市场能跑赢电子产业吗;测试测量行业是整个电子信息技术产业发展的基石,作为从前沿探索到后期大规模生产都不可或缺的环节,引领着整个信息行业的创新方向。不过随着软件价值在测试......
    仪表的计量性能和技术指标达到国际领先水平。 在这次发布的指导意见中,还提及重点领域仪器仪表研制任务清单。清单包含通用仪器仪表、科学研究领域精密测试分析仪器仪表、工程应用领域高端测试仪器......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>