汽车电子电气架构(EEA,Electrical/Electronic Architecture)把汽车中的各类传感器、ECU(电子控制单元)、线束拓扑和电子电气分配系统整合在一起完成运算、动力和能量的分配,进而实现整车的各项功能。 如果将汽车比作人体,汽车的机械结构相当于人的骨骼,动力、转向相当于人的四肢,电子电气架构则相当于人的神经系统和大脑,是汽车实现信息交互和复杂操作的关键。 电子电气架构涵盖了车上计算和控制系统的软硬件、传感器、通信网络、电气分配系统等;它通过特定的逻辑和规范将各个子系统有序结合起来,构成实现复杂功能的有机整体。 功能车时代,汽车一旦出厂,用户体验就基本固化;智能车时代,汽车常用常新,千人千面,电子电气架构向集中化演进是这一转变的前提。 从分布式到域控制再到集中式,随着芯片和通信技术的发展,电子电气架构正在发生巨大的变化。
1.1 分布式电子电气架构不堪重负
汽车诞生之初是个纯机械产品,车上没有蓄电池,车上的设备亦不需要电力,1927 年博世开发出铅蓄电池,从此车上的电子设备才有了可靠的电力来源。 大规模集成电路的发展让汽车电子得以快速发展,发动机定时点火控制系统、电控燃油喷射系统、自动变速箱控制系统、牵引力控制系统、电控悬架系统、电控座椅、电控车窗、仪表、电控空调、汽车电子稳定控制系统等,逐步成为了汽车不可或缺的组成部分。 汽车电子控制技术逐步发展壮大,为消费者提供了更高性能、更舒适、更安全的出行工具。 早期分布式的电子电气架构下,每个 ECU 通常只负责控制一个单一的功能单元,彼此独立,分别控制着发动机、刹车、车门等部件,常见的有发动机控制器(ECM)、传动系统控制器(TCM)、制动控制器(BCM)、电池管理系统(BMS)等。 各个 ECU 之间通过 CAN(Controller Area Network,控制器域网络)总线或者 LIN(Local Interconnect Network,局部互联网络)总线连接在一起,通过厂商预先定义好的通信协议交换信息。 随着整车电子电气产品应用的增加,ECU 的数量从几十个快速增加到 100 多个,ECU 数量越多,对应的总线的线束长度必将越长,线束重量也相应增加(2007 年上市的奥迪 Q7 和保时捷卡宴的总线长度超 6km,总重量超 70kg,是全车重量仅次于发动机的部件),这就导致整车成本增加、汽车组装的自动化水平低。
分布式计算导致了车内信息孤岛、算力浪费、软硬件耦合深,主机厂严重依赖供应商。 传统汽车供应链中,不同的 ECU 来自不同供应商,不同的硬件有不同的嵌入式软件和底层代码,整车软件实际上是很多独立的、不兼容的软件混合体,导致整个系统缺乏兼容性和扩展性。 车厂要进行任何功能变更都需要和许多不同的供应商去协商软硬件协调开发问题,每新增一个新功能都需要增加一套 ECU 和通信系统,耗时长,流程繁琐。且由于每个 ECU 绑定一个具体功能,无法实现横跨多个 ECU/传感器的复杂功能,亦无法通过 OTA(Over-the-Air)来保持汽车软件的持续更新。
分布式电子电气架构导致通信带宽瓶颈。 智能网联车功能越来越复杂,车辆传感器数量增加,由此产生的数据传输及处理的实时性要求提高,汽车内部网络通信数据量呈指数级增长趋势,传统的 FlexRay、LIN 和 CAN 低速总线已无法提供高带宽通信能力,也无法适应数据传输及处理的实时性要求。
我们用一个具体的例子来说明分布式电子电气架构下的弊端: 假设车厂需要修改一个雨刷总成的功能,由于每一款车在开发流程中的既定节点上,都要对雨刷总成进行定义、标定和验证,后续修改即相当于二次开发,车企需要重新和雨刷供应商签合同,重新做各个层级的标定和验证。显然这样一种面向硬件的工程化体系和流程,在车辆越来越复杂的未来,是无法支撑产品的快速迭代进化的。 解决之道就是把硬件标准化。雨刷总成是一个电机驱动的机械部件,雨刷所需的传感器可调用车辆上搭载的摄像头或其他传感器,一旦感应到挡风玻璃透明度下降,车辆即可通过软件控制让雨刷自动启动合适的工作模式,这就实现了软件定义雨刷功能的目的。当各种不同的总成、模块都标准化以后,就可以通过中央控制器里的软件来实现更高等级的智能,就像手机上运行的多个 APP,既可大幅缩短产品开发周期,也可广泛采用标准化的零部件,有助于企业控制成本和质量。比如一家零部件企业开发和生产一款标准化的雨刷,然后卖给各家整车企业,其价格会非常便宜;同时,标准化硬件的标定和验证都可适当简化,从而进一步节省开发时间和成本。
1.2 汽车电子电气架构向中央计算迈进
汽车分布式电子电气架构已不能适应汽车智能化的进一步进化。高度集成是解决之道。 基于少量高性能处理器打造汽车的“大脑”,通过一套新型的电子电气架构,形成快速传递信息的“神经网络”和“血管”,以控制和驱动所有电子件和传感器。 少量的高性能计算单元替代过去大量分布式 MCU(微控制单元),多个分散的小传感器集成为功能更强的单个传感器,汽车 、功能逐步整合集中,ECU 的减负意味着把整车原先搭载的几十上百个 ECU逐一进行软硬件剥离,再把功能主要通过软件迁移到域控制器(域控制器是指域主控硬件、操作系统、算法和应用软件等几部分组成的整个系统的统称)中,如自动驾驶、娱乐、网关等,在域控制器架构的基础上,更进一步把不同功能的域进行整合,就到了跨域融合阶段,再进一步到中央计算+位置域阶段。 华为判断到 2030 年电子电气架构将演进为中央计算平台+区域接入+大带宽车载通信的计算和通信架构。 汽车电子电气架构的升级主要体现在硬件架构、软件架构、通信架构三方面:硬件架构从分布式向域控制/中央集中式方向发展、软件架构从软硬件高度耦合向分层解耦方向发展、通信架构由LIN/CAN 总线向以太网方向发展。
博世给出的电子电气架构路线图分为六个阶段,已成行业共识:分布式阶段(包括模块化、集成化)——域集中式(包括集中化、域融合)、中央集中式(包括车载电脑、车云计算)。
模块化阶段。1)一个 ECU 负责特定的功能,比如车上的灯光对应有一个控制器,门对应有一个控制器,无钥匙系统对应有一个控制器。随着汽车功能增多这种架构日益复杂无法持续。2)集成化阶段,单个 ECU 负责多个功能,ECU数量较上一阶段减少。在这两个阶段,汽车电子电气架构仍处于分布式阶段,ECU 功能集成度较低。 功能域控阶段。功能域即根据功能划分的域控制器,最常见的是如博世划分的五个功能域(动力域、底盘域、车身域、座舱域、自动驾驶域)。域控制器间通过以太网和 CANFD(CAN with Flexible Data-Rate)相连,其中座舱域和自动驾驶域由于要处理大量数据,算力需求逐步增长。动力总成域、底盘域、车身域主要涉及控制指令计算及通讯资源,算力要求较低。
跨域融合阶段。在功能域基础上,为进一步降低成本和增强协同,出现了跨域融合,即将多个域融合到一起,由跨域控制单元进行控制。比如将动力域、底盘域、车身域合并为整车控制域,从而将五个功能域(自动驾驶域、动力域、底盘域、座舱域、车身域)过渡到三个功能域(自动驾驶域、智能座舱域、车控域)。
中央计算+位置域阶段。随着功能域的深度融合,功能域逐步升级为更加通用的计算平台,从功能域跨入位置域(如中域、左域、右域)。区域控制器平台(Zonal Control Unit,ZCU)是整车计算系统中某个局部的感知、数据处理、控制与执行单元。它负责连接车上某一个区域内的传感器、执行器以及 ECU等,并负责该位置域内的传感器数据的初步计算和处理,还负责本区域内的网络协议转换。位置域实现就近布置线束,降低成本,减少通信接口,更易于实现线束的自动化组装从而提高效率。传感器、执行器等就近接入到附近的区域控制器中,能更好实现硬件扩展,区域控制器的结构管理更容易。区域接入+中央计算保证了整车架构的稳定性和功能的扩展性,新增的外部部件可以基于区域网关接入,硬件的可插拔设计支持算力不断提升,充足的算力支持应用软件在中央计算平台迭代升级。 在一项针对某家整车制造商的研究中,安波福发现,使用区域控制器可以整合 9个 ECU,并少用数百根单独电线,从而使车辆的重量减少了 8.5千克。减重有助于节能,并延长电动汽车的续驶里程。此外,由于区域控制器将车辆的基本电气结构划分为更易于管理的组成部分,更容易实现自动化线束组装。
汽车云计算阶段。将汽车部分功能转移至云端,车内架构进一步简化。车的各种传感器和执行器可被软件定义和控制,汽车的零部件逐步变成标准件,彻底实现软件定义汽车功能。
汽车电子电气架构的演进为软硬件解耦提供了有力支撑,高度中心化的电子电气架构带来计算集中化、软硬件解耦、平台标准化、功能定制化。 1)算力趋向于集中,众多的 ECU集中到几个强大的算力平台,为软件运行提供了算力基础; 2)底层软件和代码开始打通,操作系统为核心的软件生态开始建立,软件可以实现持续迭代,OTA 发展提速; 3)域控制器+时间敏感以太网可以实现数据的高速处理和传输,为软件应用的发展创造了条件。
02 各主机厂的电子电气架构进度对比
未来汽车产品最核心的技术是电子电气架构,汽车电子电气架构由分散式、嵌入式逐渐向集中式、集成式的方向发展,最终的理想状态应该是形成一个汽车中央大脑(one brain),统一管理各种功能。 电子电气架构类似于“中央政府”,可对汽车的各种功能进行统筹管理,避免“诸侯割据、政令不一”。 开始的时候这个“中央政府”可能会管得少一些,“地方诸侯”还依然保有一定控制权,但之后“中央政府”一定会管得越来越多,最终地方行政机构只接收“中央政府”指令并予以高效执行,以确保车辆整体表现最优。 由于过去汽车上控制器相互独立,软件为嵌入式,整车做最终硬件集成即可。未来随着 ECU 的减负,原先高度分散的功能集成至域控制器,主机厂必须自己掌握中央控制系统,否则就会失去对汽车产品的控制权。而把原本高度分散的控制功能逐步整合统一起来是传统车企的全新必修课,因此车企对电子电气架构的掌握是分步的、渐进式的。 特斯拉 Model3 开启了电子电气架构大变革,出现中央计算雏形+位置域,缩短 50%整车线束,未来目标是将整车线束降至100 米,在电子架构方面,特斯拉领先传统车企 6年以上。 除特斯拉以外,目前大部分的车企的电子电气架构仍处于早期的功能域控制器阶段,即部分功能集中到了功能域控制器,但还有保留较多分布式模块,即“分布式 ECU+域控制器”的过渡方案,避免因为变革程度太大导致额外的风险及成本。 大部分企业规划的下一代跨域融合电子电气架构将于 2022 年量产,以实现软件高度集中于域控制器,逐步减少分布式 ECU。 到 2025 年部分车企落地中央计算+区域控制器的电子电气架构,从而实现软硬件的进一步集成,软件所有权逐步收归主机厂。 朝着“中央计算+区域控制”的架构演进的过程可能长达 5-10 年。
2.1 奥迪 A8 小试牛刀
2018 年推出的奥迪 A8 率先实现了辅助驾驶功能的集成式控制,取代了 ECU 相互分离的分布式的辅助驾驶系统。 除自动驾驶域集成外,其余底盘+安全、动力、车身、娱乐四大域仍然采用分布式架构。 其自动驾驶域控制器由 4 块芯片组成,Mobileye EyeQ3 负责视觉感知计算,如交通信号识别、行人监测、碰撞报警,车道线识别、光线探测。 英伟达 K1 负责图像融合计算,如驾驶员监测、360 全景摄像头的图像处理。 英特尔 Cyclone V 负责目标融合、地图融合、停车辅助、预刹车灯。英飞凌的 Aurix TC297 负责通信处理。 这个自动驾驶域控制器软件开发由奥地利软件公司 TTTech 完成,德尔福提供硬件集成。
2.2 特斯拉 Model3 开启电子电气架构的全面变革
特斯拉是汽车电子电气架构的全面变革者,2012 年 Model S 有较为明显的功能域划分,包括动力域、底盘域、车身域,ADAS 模块横跨了动力和底盘域,由于传统域架构无法满足自动驾驶技术的发展和软件定义汽车的需求,为解耦软硬件,搭载算力更强大的主控芯片,必须先进行电子电气架构的变革,因此 2017 年特斯拉推出的 Model3 突破了功能域的框架,实现了中央计算+区域控制器框架,通过搭建异域融合架构+自主软件平台,不仅实现软件定义汽车,还有效降低整车成本,提高效率: 1)Model 3整车三个控制器,有效降低物料成本; 2)硬件集成为软件,为汽车深度的控制和维护提供基础; 3)自主软件平台通过模块化支持扩展复用。
特斯拉 Model3 基本实现了中央集中式架构的雏形,不过 Model3 距离真正的中央集中式架构还有相当距离:通讯架构以 CAN总线为主,中央计算模块只是形式上将影音娱乐 MCU、自动驾驶 FSD 以及车内外联网模块集成在一块板子上,且各模块独立运行各自的操作系统。但无论如何,Model3 已经践行了中央计算+区域控制的电子电气架构理念框架,领先传统车企 6 年左右。 特斯拉三代车的电子电气架构演进背后的实质是不断把车辆功能从供应商手中拿回来自主开发的过程。 Model3 的自动驾驶模块、娱乐控制模块、其它区域控制器、热管理均为自主设计开发,实现了整车主要模块自主,不依赖 TIer1,即使没有实现自主的模块,特斯拉也与供应商进行了联合开发,比如特斯拉将自己的软件加入到了博世为其提供的 ibooster 里,通过软件更新实现刹车距离变短。
通过三款车型的演进,特斯拉的新型电子电气架构不仅实现了 ECU数量的大幅减少、线束大幅缩短(MODEL S 线束 3000米,Model 3 减少一半以上),更打破了汽车产业旧有的零部件供应体系(即软硬件深度耦合打包出售给主机厂,主机厂议价能力差,后续功能调整困难),真正实现了软件定义汽车,特斯拉的 OTA 可以改变制动距离、开通座椅加热,提供个性化的用户体验,由于突破了功能域,特斯拉的域控制器横跨车身、座舱、底盘及动力域,这使得车辆的功能迭代更为灵活,用户可以体验到车是常用常新的,与之形成鲜明对比的是,大部分传统车厂的 OTA 仅限于车载信息娱乐等功能。 特斯拉为了更好地发挥软件的作用,实现了自动驾驶主控芯片这一最为核心的智能硬件的自研自制(特斯拉认为芯片的专用设计使得其上的软件运行更高效),这意味着后续特斯拉车辆的升级速度、功能的部署都不再依赖外部 SOC 芯片供应商,真正将车辆的灵魂掌握在自己手中。
Model 3整车四个控制器包括中央计算模块(CCM)、左车身控制模块(BCM LH)、右车身控制模块(BCM RH)和前车身控制模块(BCM FH)四大域控制器。 左车身控制模块负责左车身便利性控制以及转向、制动、助力等。 右车身控制模块负责右车身便利性控制、底盘安全系统、动力系统、热管理等。 中央计算模块包括自动驾驶模块、信息娱乐模块、车内外通信连接,共用一套液冷系统。 自动驾驶及娱乐控制模块接管与辅助驾驶有关的传感器——摄像头、毫米波雷达,将对算力需求较高的智能驾驶、信息娱乐放在一起,便于智能硬件持续升级,2019 年特斯拉推出自研 FSD 芯片替换了基于英伟达 Drive PX2 芯片组,AI 计算性能提升达 21 倍,随着特斯拉将自动驾驶最核心的计算硬件实现自研,特斯拉大幅提升了相对于竞争对手的领先优势。 操作系统基于开源 Linux进行定制化裁剪,并自研中间件,软硬件均实现了自主可控,车型功能迭代更新速度加快,整车开发成本降低。
2.3 大众 ID 系列电子电气架构
大众汽车已经从 MQB 平台车型的分布式电子电气架构升级为 MEB 平台 ID 系列车型上采用的三个功能域的电子电气架构。 按规划,基于大众 MEB 平台的 ID系列电子电气架构为 E³1.1版,2023年在 PPE 平台搭载 E³1.2版,到 2025年后才进化到 E³2.0 版。 大众的 E3 架构主要由车辆控制域(ICAS1)、智能驾驶域(ICAS2)和智能座舱域(ICAS3)组成,其中智能驾驶域 ICAS2尚未开发完成,量产车型上搭载的依然是分布式架构方案,大众 ID 系列的电子电气架构虽然有三个功能域,但同时依然保留了较多分布式模块,大众 ID4 有 52 个 ECU,两倍于特斯拉 Model Y ECU数量。 国产 ID4 辅助驾驶功能由 Mobileye 单目摄像头+前长距雷达+两个后角雷达实现,作为平价电动车,在自动驾驶域控制器这块暂时没有选择跟特斯拉和中国新势力去PK。
大众 ID 系列车型 2021 年完成 7 万台交付量,低于前期规划。 中国作为大众最重要的单一市场,智能化这块也正在加速追赶,2022 年大众软件公司 CARIAD 在中国成立子公司,据其中国子公司首席执行官介绍,该公司的核心业务是针对 MEB平台进行软件研发,2022 年下半年启动 OTA 功能,第二是针对高端平台(PPE 在华首款车 2024 年投产)做中国本土化、数字化产品,包括高级驾驶辅助系统,其智能网联系统也要与中国的基础设施建设相结合;第三是围绕 2025 年后 SSP 平台做软件研发。 结合大众汽车 2030 NEW auto 的规划,软件自研比例要上升到 60%,软件研发保持自主的好处是实现敏捷(包括开发和维护)和体现产品差异化,其中本地化也是外资在中国提升智能化的必要且关键的一环,最终目的是打造吸引中国用户的有竞争力的产品。 我们看一下几款同一时间面世的三款电动车的电子电气架构的对比,虽然大众 ID 系列也号称是用三个域控制器代替过去 70+ 分布式 ECU,但实际上依然保有较多 ECU 数量,ID3 之前由于出现大面积的软件 BUG 而迟迟未按期交付,这也反映出传统车厂即使选择进行电子电气架构大变革,但若自身人才结构及软件实力尚不足够,就依然会严重依赖外部供应商,造成步子迈得太大带来额外风险。 所以大部分主机厂选择的做法是走渐进式路线,随着自身软件实力提升逐步收归软件主导权。
2021 年 Munro & Associates 工程公司比较了特斯拉 Model Y、福特 Mach-E 和大众 ID.4 电气架构之间的差异。 涉及三款电动车内 ECU 的数量、CAN 总线的数量、以太网的使用、LIN 总线、LVDS(Low-Voltage DifferenTIal Signaling,低电压差分信号)通道的使用、音频、保险丝和继电器的使用等方面。 特斯拉 Model Y 集成度明显更高,其 ECU 数量是 ID4 的一半,福特和大众还保留了较多的现成的分布式 ECU,特斯拉的 LIN(本地互连网络)数量也仅为大众 ID4和福特 Mach-E 的一半。 Tesla 中 CAN(控制器局域网)总线的数量更高,由于摄像头数量增加,特斯拉的低压差分信号(LVDS)使用量是福特和大众汽车的三倍以上,大众汽车的以太网的使用更多。 特斯拉从 Model 3开始车辆的低压电气部分不采用任何保险丝盒继电器。
2.4 小鹏汽车 G9 电子电气架构具领先性
新势力三强中小鹏汽车在电子电气架构方面走得比较领先,随着车型从 G3、P7 和 P5,迭代到 G9 的这套 X-EEA3.0 电子电气架构,已经进入到中央集中式电子电气架构。 凭借领先一代的架构,搭载更高算力 SOC 芯片及更高算力利用率,小鹏G9 或成首款支持 XPILOT 4.0 智能辅助驾驶系统的量产车。 小鹏 P7 搭载小鹏第二代电子电气架构,具备混合式的特点: 1) 分层域控。功能域控制器(智驾域控制器、车身域控制器、动力域控制器等模块)与中央域控制器并存; 2) 跨域整合——域控制器覆盖多重功能,保留局部的传统 ECU; 3) 混合设计——传统的信号交互和服务交互成为并存设计。 因此 CAN 总线和以太网总线并存,大数据/实时性交互均得以保证;以太网节点少,对网关要求低。 小鹏第二代电子电气架构实现传统 ECU 数量减少约 60%,硬件资源实现高度集成,大部分的车身功能迁移至域控制器,中央处理器可实现支持仪表、信息娱乐系统以及智能车身相关控制的大部分功能,同时集成中央网关,兼容 V2X 的协议,支持车与车的局域网的通信,支持车与云端的互联,车与远程数字终端的连接功能。 小鹏汽车的智能驾驶域控制器,集成了高速 NGP、城市 GNP 及泊车功能。 小鹏辅助驾驶采用激光雷达视觉融合方案,与特斯拉的纯视觉方案不同,这就导致两者硬件架构不同,对于通讯带宽、计算能力的要求也不一样。
小鹏汽车将其 X-EEA3.0 电子电气架构称为“让智能汽车在未来永不落伍的秘密”。根据公司披露的首搭于 G9 的电子电气架构的信息,未来 G9 可以升级和优化的潜力较大。 X-EEA 3.0硬件架构方面,采用中央超算(C-DCU)+区域控制(Z-DCU)的硬件架构,中央超算包含车控、智驾、座舱 3个域控制器,区域控制器为左右域控制器,将更多控制件分区,根据就近配置的原则,分区接管相应功能,大幅缩减线束。 得益于小鹏汽车的全栈自研能力,新架构做到了硬件和软件的深度集成,不仅实现软硬件解耦,也实现软件分层解耦,可使得系统软件平台、基础软件平台、智能应用平台分层迭代,把车辆的底层软件和基础软件与智能、科技、性能相关的应用软件脱离开,在开发新功能时,只需要对最上层的应用软件进行研究和迭代就可以,缩短了研发周期和技术壁垒,用户也能够享受到车的快速迭代。
系统软件平台:基于外购代码做部分定制开发,随整车基础软件平台冻结而冻结,可复用于不同车型; 基础软件平台:多个整车基础功能软件均形成标准服务接口且在车辆量产前冻结,可复用于不同车型; 智能应用平台:如自动驾驶、智能语音控制、智能场景等功能,可实现快速开发和迭代。 X-EEA 3.0 数据架构方面,域控制器设置内存分区,升级运行互不干涉,便用车边升级,30分钟可升级完成。 通信架构方面,X-EEA3.0 在国内首次实现了以千兆以太网为主干的通信架构,同时支持多通讯协议,让车辆在数据传输方面更快速。从 G9 搭载的新一代电子电气架构可以看出,小鹏在骨干网络的建设和面向 SOA 的方向起步较早。 X-EEA 3.0 电力架构方面,可实现场景式精准配电,可根据驾驶、第三空间等不同用车场景按需配电,比如在路边等人时,可以只对空调、座椅调节、音乐等功能供电,其他部分断电,这样就能实现节能耗节省,提高续航里程。车辆定期自诊断,主动发现问题,引导维修,以科技手段赋能售后。
2.5 长城汽车电子电气架构发展路线图
长城汽车 2020 年开发的第三代电子电气架构包含 4 个功能域控制器——车身控制、动力底盘、智能座舱、智能驾驶,应用软件自主研发,已实现量产并应用于长城汽车全系车型,车型物料成本得以优化,如新哈弗 H6 优化了 300 米线束,总长度1.6 公里,接近特斯拉 Model 3,减重超 2 公斤。 从 GEEP3.0开始长城汽车实现全部应用层软件自主开发能力,四个域控制器的上层应用软件,甚至部分底层及底层的集成软件亦由长城汽车自主开发。
2022 年内将推出的第四代电子电气架构将进一步集中整车控制软件,实现高效集成管理、高度安全可靠和更快需求响应。第四代架构拥有中央计算、智能座舱及高阶自动驾驶 3 个计算平台,外加 3 个区域控制器(左、右、前)。第四代架构将率先搭载到长城汽车的全新的电动、混动平台,并陆续扩展到全系车型。 第四代电子电气架构的中央计算单元跨域整合了车身、网关、空调、动力/底盘控制及 ADAS 功能,它的主控芯片算力高达 30KDMIPS,能够高效保障系统的控制和响应。 GEEP 4.0 架构拥有成熟的视觉处理芯片解决方案,18 路 CAN FD、4 路 LIN、11 路车载以太网,以及 64GB 存储和 1GB 内存等配置,以备未来功能融合带来的算力和通信等需求。 3 个区域控制器为标准化的控制单元,负责整合周边 MCU,目前三个区域控制器的大部分软件算法已经上移到中央计算单元中,由长城软件团队开发。 该架构引入 SOA 设计方式及理念,打造软件分层的基础架构平台,提供模块化标准服务接口,优势是可以提供积木式拆装组合、解耦软硬件平台,提高软件复用性,让汽车实现全生命周期的功能迭代升级,用户可以根据需求喜好,动态订阅升级车辆服务功能,无需等待软件升级批次。 同时 SOA 化还能灵活部署智能化场景,标准化接口可实现开放服务,构建长城汽车众创生态,联合开发者为用户提供全场景智慧出行服务。 GEEP 4.0 支持固件空中升级,软件空中升级、远程诊断;同时支持整车所有 ECU OTA 功能,包含动力底盘系统、影音娱乐系统、车身系统、智能驾驶系统等。 基于全新架构的云诊断方式为售后服务带来便利,基于车端、云端功能的部署,实现远程对车辆故障信息诊断,可以远程对车辆进行维修。 在保证诊断和维修时效性同时,通过诊断知识库可以智能化地识别、分析,并匹配最优的维修方案,有效解决 4S 店人员不足、技术受限的短板,真正做到快速为用户排忧解难。