开发板自带的LCD驱动是基于platform总线写的,所以如果要使其它的LCD能够在自己的开发板上跑起来,那么就先了解platform驱动的架构,下面简单记录下自己看platform驱动时体会,简单的说platform是一种虚拟总线,那么它也是一条总线,所以它分为3个部分,platform_bus,platform_device,platform_driver。在platform_device向platform_bus注册设备,platform_driver向platform_bus注册驱动,注册后在platform_bus中会有一条device链表和driver链表,platform_bus中match函数将匹配两者的名字,如果相同那就把驱动和设备进行绑定。Linux platform driver机制和传统的device driver机制(通过driver_register进行注册)相比,一个明显的优势在于platform机制将设备本身的资源注册进内核,由内核统一管理,在驱动中使用这些资源时通过platform device提供的标准结构进行申请并使用。这样提高了驱动和资源的独立性,并且具有较好的可移植性和安全性(这些标准接口是安全的)。下面举一个简单platform驱动的例子来分析platform_device和platform_driver是怎么联系,platform_driver是怎么使用platform_device提供硬件信息的。
led_dev.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
/* 分配/设置/注册一个platform_device */
static struct resource led_resource[] = {
[0] = {
.start = 0x56000010, /* TQ2440的LED是GPB5,6,7,8, GPBCON地址是0x56000010 */
.end = 0x56000010 + 8 - 1,
.flags = IORESOURCE_MEM, /* 标识led控制器io端口*/
},
[1] = {
.start = 5, /* LED1 */
.end = 5,
.flags = IORESOURCE_IRQ, /* 标识LED中断 */
}
};
/* 必须提供realease函数,可以不实现 */
static void led_release(struct device * dev)
{
}
static struct platform_device led_dev = {
.name = "myled", /* 设备名 */
.id = -1, /* 一般设为-1,表示同样名字的设备只有一个 */
.num_resources = ARRAY_SIZE(led_resource), /* 资源数量*/
.resource = led_resource,
.dev = {
.release = led_release, /* 引用上面定义的资源 */
},
};
static int led_dev_init(void)
{
platform_device_register(&led_dev);/* 注册平台设备 */
return 0;
}
static void led_dev_exit(void)
{
platform_device_unregister(&led_dev);/* 注销平台设备*/
}
module_init(led_dev_init);
module_exit(led_dev_exit);
MODULE_LICENSE("GPL");
Led_drv.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
static int major;
static struct class *cls;
static volatile unsigned long *gpio_con;
static volatile unsigned long *gpio_dat;
static int pin;
static int led_open(struct inode *inode, struct file *file)
{
//printk("first_drv_openn");
/* 配置为输出 */
*gpio_con &= ~(0x3<<(pin*2));
*gpio_con |= (0x1<<(pin*2));
return 0;
}
static ssize_t led_write(struct file *file, const char __user *buf, size_t count, loff_t * ppos)
{
int val;
//printk("first_drv_writen");
copy_from_user(&val, buf, count); // copy_to_user();
if (val == 1)
{
// 点灯
*gpio_dat &= ~(1<
else
{
// 灭灯
*gpio_dat |= (1<
return 0;
}
static struct file_operations led_fops = {
.owner = THIS_MODULE, /* 这是一个宏,推向编译模块时自动创建的__this_module变量 */
.open = led_open,
.write = led_write,
};
static int led_probe(struct platform_device *pdev)
{
struct resource *res;
/* 分配/设置/注册一个platform_driver */
/* 根据platform_device的资源进行ioremap */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
gpio_con = ioremap(res->start, res->end - res->start + 1);
gpio_dat = gpio_con + 1;
res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
pin = res->start;
/* 注册字符设备驱动程序 */
printk("led_probe, found ledn");
/* 注册设备,生成设备文件*/
major = register_chrdev(0, "myled", &led_fops);
cls = class_create(THIS_MODULE, "myled");
class_device_create(cls, NULL, MKDEV(major, 0), NULL, "led"); /* /dev/led */
return 0;
}
static int led_remove(struct platform_device *pdev)
{
/* 卸载字符设备驱动程序 */
/* iounmap */
printk("led_remove, remove ledn");
class_device_destroy(cls, MKDEV(major, 0));
class_destroy(cls);
unregister_chrdev(major, "myled");
iounmap(gpio_con);
return 0;
}
struct platform_driver led_drv = {
.probe = led_probe,
.remove = led_remove,
.driver = {
.name = "myled",
}
};
static int led_drv_init(void)
{
platform_driver_register(&led_drv); /* 注册平台驱动 */
return 0;
}
static void led_drv_exit(void)
{
platform_driver_unregister(&led_drv); /* 注销平台驱动 */
}
module_init(led_drv_init);
module_exit(led_drv_exit);
MODULE_LICENSE("GPL");
这就是一个简单的platform驱动,这两个文件我们完全可以写道一个文件中去实现,现在看下由一个文件如何实现这个驱动:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
static struct class *seconddrv_class;
static struct class_device *seconddrv_class_dev;
volatile unsigned long *gpfcon;
volatile unsigned long *gpfdat;
static int second_drv_open(struct inode *inode, struct file *file)
{
/*
* K1,K2,K3,K4对应GPF1、GPF4、GPF2、GPF0
*/
/* 配置GPF1、GPF4、GPF2、GPF0为输入引脚 */
*gpfcon &= ~((0x3<<(1*2)) | (0x3<<(4*2)) | (0x3<<(2*2)) | (0x3<<(0*2)));
return 0;
}
ssize_t second_drv_read(struct file *file, char __user *buf, size_t size, loff_t *ppos)
{
/* 返回4个引脚的电平 */
unsigned char key_vals[4];
int regval;
if (size != sizeof(key_vals))
return -EINVAL;
regval = *gpfdat;
key_vals[0] = (regval & (1<<1)) ? 1 : 0;
key_vals[1] = (regval & (1<<4)) ? 1 : 0;
key_vals[2] = (regval & (1<<2)) ? 1 : 0;
key_vals[3] = (regval & (1<<0)) ? 1 : 0;
copy_to_user(buf, key_vals, sizeof(key_vals));
return sizeof(key_vals);
}
static struct file_operations sencod_drv_fops = {
.owner = THIS_MODULE, /* 这是一个宏,推向编译模块时自动创建的__this_module变量 */
.open = second_drv_open,
.read = second_drv_read,
};
int major;
static int second_drv_init(void)
{
major = register_chrdev(0, "second_drv", &sencod_drv_fops);
seconddrv_class = class_create(THIS_MODULE, "second_drv");
seconddrv_class_dev = class_device_create(seconddrv_class, NULL, MKDEV(major, 0), NULL, "buttons"); /* /dev/buttons */
gpfcon = (volatile unsigned long *)ioremap(0x56000050, 16);
gpfdat = gpfcon + 1;
return 0;
}
static void second_drv_exit(void)
{
unregister_chrdev(major, "second_drv");
class_device_unregister(seconddrv_class_dev);
class_destroy(seconddrv_class);
iounmap(gpfcon);
return 0;
}
module_init(second_drv_init);
module_exit(second_drv_exit);
MODULE_LICENSE("GPL");
由此可见,如果由platform驱动去实现led驱动将会多出很多东西,而这些多出来的就是我们如何把一个驱动程序融合到platform里面,那既然用platform驱动要多写那么多东西那问什么还要写基于platform的驱动呢?我的理解是基于以下几个原因:如果一个设备挂在总线上,其结果是配套的sysfs结点,设备电源管理都成为可能;隔离了BSP和驱动,在BSP中定义platform设备和设备使用的资源,设备的具体配置信息,而在驱动中,只要通过API去获取资源和数据,做到了板相关代码与驱动代码的分离,使得驱动具有更好的可移植性和更好的扩展性和跨平台性;假如我们要实现一个LCD驱动,那么我们只需修改BSP相关的代码,platform基本上不需修改,避免重复着轮子的可能性;基于platformplatform机制将设备本身的资源注册进内核,由内核统一管理。
上面platform的例子还没有完全按照linux platform的标准去写,因为阅读代码可知linux platform驱动把platform_device相关的代码放在一块,然后统一进行注册!
下面记录下如何把device添加到板级文件中(最开始还是建议写成两个文件,分别编译成模块加载,因为如果是放到板级文件中那么需要重新编译内核,这个将在编译上浪费很多时间)