集成理想二极管、源选择器和eFuse有助于增强系统鲁棒性

发布时间:2023-12-15  


本文引用地址:

简介

理想二极管使用低导通电阻功率开关(通常为MOSFET)来模拟二极管的单向电流行为,但没有二极管的压降损失。借助额外的背靠背MOSFET和控制电路,该解决方案可以提供更多的系统控制功能,例如优先源选择、限流、浪涌限制等。在传统解决方案中,这些功能分散在不同的控制器中,因此实现完整的系统保护会很复杂且麻烦。这里我们将研究理想二极管的主要电路规格,并介绍一个应用示例和新的理想二极管解决方案,该解决方案还在单个IC中集成了实现整体系统保护所需的其他功能。

理想二极管基础知识

图1显示了采用N沟道功率MOSFET的基本理想二极管。将MOSFET放置在适当的方向,使其本征体二极管与要模拟的二极管功能方向相同(上方)。当VA高于VC时,电流可以自然地从左向右流过本征二极管。当电流沿该方向流动时,控制电路使MOSFET导通,以减小正向压降。当VC高于VA时,为了防止电流反向(从右到左)流动,控制电路必须将MOSFET快速关断。理想二极管的压降很低,由MOSFET的RDS(ON)和电流大小决定。例如,在1 A负载下,10 mΩ MOSFET的端子会产生1 A × 10 mΩ = 10 mV的压降,而常规二极管的典型压降为600 mV。理想二极管的功耗为1 A2 × 10 mΩ = 10 mW,明显低于常规二极管的1 A × 600 mV = 600 mW(典型值)。

image.png

image.png

图1 二极管和理想二极管

得益于MOSFET技术的进步,现在出现了低RDS(ON)的MOSFET。如果在理想二极管解决方案中添加背靠背MOSFET,虽然会使压降略微增加,但也会带来许多系统控制功能。图2显示了此电路概念。

image.png

图2 具有背靠背MOSFET的理想二极管

原有的Q1可以控制和阻断从VB流向VA的反向电流。添加的MOSFET Q2可以控制和阻断从VA流向VB的正向电流。

此解决方案通过导通/关断一个或两个MOSFET,或者限制任一方向的电流流过,可实现全面的系统控制。

理想二极管应用实例及主要规格

理想二极管有许多应用。以工业UPS备用电源系统(图3)为例。该系统使用24 V主电源。此电源的工作范围为19.2 VDC至30 VDC,瞬态电压可高达60 V。将24 V电池用作备用电源。为确保备用电源充分可用,在正常运行期间(当电池处于待机状态时),电池充满至24 V。当主电源中断时,电池提供备用电源,从24 V放电至19.2 V以下,直至系统不再运行,或者直至主电源恢复,以较早出现的情形为准。这里需要一个理想二极管电路来提供ORing功能,用于在系统电源和备用电池之间切换。除了ORing功能,该系统还需要过压、欠压、热插拔和eFuse保护,以防范常见的系统故障,增强系统鲁棒性。

1702631215964338.png

图3 工业UPS备用电源系统

ORing与源选择器

图4展示了电源ORing概念。为简单起见,这里使用二极管符号代替理想二极管电路。在这种简单的ORing配置中,电压较高的电源占主导地位并为负载供电,另一个电源处于待机状态。如果两个电源具有不同的电压值,该解决方案会很有效。当两个电压彼此接近时,或者当存在电压波动而导致电压值交叉时,电源可能会来回切换。

1702631235484640.png

图4 输入电源ORing

在这个用例中,简单的ORing功能是不够的,原因有二。首先,电池电压与系统标称电压24 V差不多。两个电源可能会来回切换,这是我们不希望看到的。源阻抗和负载电流的影响进一步放大了这个问题。例如,当VS为负载供电时,负载电流会在VS源阻抗两端产生压降,使其端电压降至略低于电池端电压(当前空载)的水平。电池随即接通,现在承载负载电流,这同样会在电池阻抗两端产生压降,导致电池端电压下降。同时,在无负载情况下,主电源端电压升高,使得VS试图接管。在这种情况下,就会在两个电源之间持续振荡直到两个电压彼此偏离为止。

其次,24 V系统电源的电压范围为19.2 VDC(最小值)至30 VDC(最大值),峰值电压瞬态可高达60 V。备用电池电压充电至24 VDC,当主电源电压下降到电池电压以下但仍在其工作范围内时,将由电池供电。这也是我们不希望看到的,因为电池会放电至非理想备用电压。每当系统电压低于24 V且高于其最小工作范围时,系统便可能会尝试同时对电池进行充电和放电。源选择器在这种情况下很有用。图5显示了使用具有背靠背MOSFET的理想二极管的源选择器概念。通过背靠背MOSFET,控制器可以完全切断两个方向的电流路径,就像机械开关断开一样。图6是具有背靠背MOSFET的理想二极管的符号表示。此符号在图5中表示可实现源选择器功能。在此配置中,VS设置为高优先级。VB关断,只有在VS低于其工作电压范围时才导通。

1702631254137794.png

图5 输入源选择器

image.png

图6 具有背靠背MOSFET的理想二极管的符号表示

图7显示了电池处于待机状态和备用期间的电源选择器操作。

1702631282841947.png

图7 输入源选择器操作

其他重要系统保护要求

虽然图6所示是一个闭合或断开的机械开关,但请注意,借助适当的电流检测电路,控制器也可以调节电流。浪涌限制(热插拔)、过载/短路保护(eFuse)和欠压/过压(UV/OV)等重要功能,均可利用已有的相同功率MOSFET来实现。

热插拔

如图3所示,当电路板插入背板(主系统电源和备用电池所在的板)时,系统板需要热插拔功能来限制给输入电容C充电时的浪涌电流。这种热插拔功能通过检测和控制流过图2中Q2的电流来实现。

eFuse

此功能可保护系统免受过流或短路情况的影响。使用图2中相同的Q2,可监测、限制和关断流经Q2的电流。eFuse应用中的限流阈值精度对于优化系统功耗预算非常重要。

UV/OV

控制器持续监测电源电压。欠压保护(UVLO)使Q2(图2)保持安全关断状态,直至电源电压上升到其最低工作电平(本例中为19.2 V)以上。当输入瞬态电压超过设定的最大电平(本例中选择电压值>30 V)时,过压保护(OV)功能就会将Q2关断。

重要的理想二极管电路规格及其对系统性能的影响

我们回到理想二极管,研究其用于ORing或源选择器功能时的一些关键规格。

反向电流响应时间

参考图2,这是Q1在电压VA和VB反转并使VB大于VA之后关断的时间。此反向电流响应时间tR必须很小(100 ns),以防反向电流从VB流回VA。在该系统中,当主导电源VS(在驱动负载时)关断、瞬变至较低电压或短路时,电压可能反向。在这种情况下,tR防止反向电流从板电容C或从备用电池流回VS,或者尽可能减小反向电流。

过压情况后的恢复

在没有备用电池的系统中(图8),电容C提供备用电源,通常称其为保持电容。在这种配置中,VS上的瞬态过压条件会触发Q2(图8)关断。电容提供必要的电力以保持系统运行,同时其电压因放电而下降。当VS回到正常工作范围时,Q2重新导通。Q2重新导通的时间tON必须很短,使电容压降尽可能低。图9显示了一个相对比较结果,在保持电容量相同的情况下,一半tON可将压降降低一半。

1702631306775518.png

图8 具有保持电容的系统

image.png

图9 压降与tON的关系

我们研究了不同功能,如源选择器、热插拔、eFuse、UV/OV和关键规格,目的是防范常见的系统故障,增强系统鲁棒性。使用许多单一功能IC来实现所有这些功能会很麻烦。这种解决方案很复杂,需要许多元器件。MAX17614是一款全新的高集成度解决方案,通过单个IC即可实现高性能理想二极管功能以及许多其他功能,从而为电源系统提供全面保护。该器件的工作电压范围为4.5 V至60 V,提供3 A输出,具有理想二极管/优先电源选择器功能,以及可调限流、热插拔、eFuse、UV和OV保护功能。图10和图11分别显示了MAX17614在ORing应用和优先电源选择器应用中的简化原理图。

1702631338844677.png

图10 MAX17614的电压ORing应用

1702631355361910.png

图11 MAX17614的优先电源选择器应用,其中VS具有优先权

结语

背靠背MOSFET解决方案可提供更多系统控制功能,如源选择、热插拔、eFuse、UV/OV等。使用单一功能IC的组合来提供完整系统保护的传统解决方案既复杂又麻烦。我们研究了UPS备用电源应用,并简要介绍了一种理想二极管解决方案,该解决方案还将其他需要的功能集成到单个IC中,以实现整体系统保护。

关于作者

Anthony T. Huynh(又名Thong Anthony Huynh)是Maxim Integrated(现为ADI公司的一部分)的应用工程技术团队(MTS)的主要成员。他在设计和定义隔离式与非隔离式开关电源电源管理产品方面拥有20多年的经验。在ADI公司,他定义了100多种电源管理产品,包括DC-DC转换器、热插拔控制器、以太网供电以及被全球各大制造商采用的各种系统保护IC。

Anthony持有4项电源管理方面的美国专利,并撰写了该领域的多篇公开文章和应用笔记。他拥有俄勒冈州立大学电气工程学士学位,并修完了波特兰州立大学电气工程硕士学位的所有课程,同时他曾作为兼职讲师在波特兰州立大学教授电源电子课程。

文章来源于:电子产品世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>