使用动态电压和频率调节来节省系统电池电量需求

发布时间:2023-07-28  

移动设备消耗的能量是开关能量和泄漏能量的组合。当开关能量占主导地位时,降低电源电压电平可有效降低总功耗,因为开关能量与电源电压的平方成正比。

本文引用地址:

移动设备消耗的能量是开关能量和泄漏能量的组合。当开关能量占主导地位时,降低电源电压电平可有效降低总功耗,因为开关能量与电源电压的平方成正比。
和频率调节 (DVFS) 可根据工作频率要求控制电源电压,对此目的特别有效。
工作频率
在下面的图 1中,实心黑色曲线显示了 DVFS 下能耗对工作频率的依赖关系。这里,工作频率随着电源电压的降低而单调降低。
当工作频率高于电源电压(Vopt)的能量点(MEP)时,能耗随着工作频率的降低而减少。然而,当运行频率低于 MEP 的运行频率时,能耗会随着运行频率的降低而增加。
当电源电压接近LSI晶体管的阈值电压时,即使是微小的变化也会导致工作频率发生很大的变化。在这种情况下,由于工作时间增加而导致的泄漏能量的增加将超过由电源电压降低导致的开关能量的任何减少,因此总能量将增加。
在这种情况下,仅靠 DVFS 不足以降低能耗。然而,所提出的将 DVFS 与功率门控相结合的技术(一种减少漏电的技术,其中插入在电源和目标电路之间的电源开关在目标电路空闲时间内关闭)被证明更为有效。
通过 DVFS 和功率门控的组合,当所需频率低于 MEP 的频率时,目标电路在 Vopt 下工作,并且通过空闲时间期间的功率门控来减少泄漏能量。
尽管较高的电源电压会导致开关能量增加,但由于泄漏能量的减少,总能量比单独的 DVFS 减少了更多(参见下面图 1 中的红色实线,其中也显示了该方案的框图)。

使用动态电压和频率调节来节省系统电池电量需求


图 1:实心黑色曲线显示 DVFS 下的能耗与运行频率的关系。

MEP 监视器确定用于化能耗的 Vopt,延迟监视器确定满足频率要求所需的电源电压值,并向调节器输出控制信号,调节器通过向目标电路提供适当的电压来做出响应。
当确定的电源电压低于Vopt时,MEP监视器禁用控制信号,并且电源电压维持在Vopt。当目标电路工作在Vopt时,MEP监视器还使电源门控控制器能够控制电源开关,以减少空闲时间的泄漏能量。MEP监视器控制整个系统以化操作能量,是该方案的关键组件。
虽然能量减少在很大程度上取决于确定 Vopt 的准确程度,但这里的准确性并不容易,因为 Vopt 在很大程度上取决于泄漏电流,而泄漏电流又取决于温度、电源电压和其他因素。已经提出了许多不同的方法来解决这个问题。
传统与新型
一种方法是根据目标电路在不同电源电压电平下的实际能耗测量来确定 Vopt,并选择能耗少的电压。由于目标电路本身用作能量监视器,因此该方案相对于 MEP 而言具有很高的度,但在监视器操作期间必须暂停电路操作。
另一种传统方法是使用理论方程。例如,的一种方法是基于 MEP 处的 delta Eall/delta VDD = 0 的事实。在这种方法中,Vopt 表示为方程 2。
不幸的是,这种方法似乎并不适合电路实现,因为它包括一个参数n,该参数n对电源电压的依赖性是非线性的。NEC 设计了一种确定 Vopt 的新方法,该方法由简单的组件组成,适合电路实现。
与以前的方法相比,这种新技术允许同时进行监控操作和电路操作,并且已被证明是可行的。它基于 MEP 处 deltaEall VDD = 0 的事实,其中 Eall 表示为上面图 1中的公式 1 。
请注意,(IL1T1-IL2T2)/Delta V 替换为 delta ILT)/deltaVDD 等式的微分。然后可以通过近似推导公式 3,其中 Delta V 远小于 VDD。IL1 和 T1 分别是 VDD 时的漏电流和关键路径延迟,而 IL2 和 T2 是 VDD-Delta V 时的漏电流和关键路径延迟。由于漏电流和关键路径延迟都可以用监视器测量,因此公式 3 适用于电路实现。
根据公式 3,我们可以确定 Vopt 如下: 它的右边等于电容器的电压,该电容器初充电至 VDD,然后用 IL1 额外充电 T1 时间,并用 IL2 放电 T2 时间,其中电容器的电容是目标电路的开关电容和开关活动的乘积。对于给定的 VDD,如果电容器的电压等于 VDD-Delta V,则该 VDD 将是化能耗的电压。

使用动态电压和频率调节来节省系统电池电量需求


图 2:所示为建议的电压确定器和测量结果

电路实现
上面的图 2 显示了用于确定 Vopt 的电路。这是一个非常简单的电路,由一个电容为 alpha x C0 的可变电容器组成;两个漏电流发生器,每个包含目标电路的复制品;两个脉冲发生器,每个包含目标电路的关键路径复制品;一个比较器;和三个开关。IL1 和 IL2 分别从两个漏电流发生器流出或流入两个漏电流发生器。
SW1、SW2和SW3打开分别对电容器进行初始充电、附加充电和放电。为了打开 SW2 和 SW3,脉冲发生器分别产生脉冲宽度为 T1 和 T2 的信号。
采用90nm CMOS技术制造了测试芯片来评估电路的有效性以及DVFS与功率门控的结合。目标电路是一个 101 级环形振荡器,由两个 FO = 4 的输入与非门组成。
图 2 显示了目标电路的能量对电源电压的依赖性,以及由确定器电路确定的点,其中 Delta V = 20mV。曲线代表开关活性为0.1条件下的三个温度(25℃、75℃和125℃)。
该电路在所有条件下都能准确地确定 MEP 实际电压值 50mV 以内的电压。图 2 还显示,在 125°C 且 Vopt=0.67V 的情况下,采用 40MHz 功率门控的 Vopt 操作可实现 52.8% 的能耗降低,比仅使用 5MHz DVFS 实现的能耗还要高。

文章来源于:电子产品世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    成为电动汽车的必备装置。 二、动力电池管理系统的主要功能 如图4-15所示,常见动力电池管理系统的功能......
    动力电池系统BMS软硬件架构; 电池管理系统基本组成 一、电池管理系统的硬件架构 1.1 集中式 1.2......
    记录,故障决策,都是主控模块的功能。 汽车动力电池管理系统BMS浪涌静电防护方案 1)DC 24V直流电源输入接口浪涌防护 从方案图中可知,用于满足24V直流电源输入口浪涌防护,东沃......
    控制器还要负责将驱动电机副扭矩产生的交流电进行整流,回充给动力电池。它面临的工况相对复杂,需要能够频繁起停、加减速,低速/爬坡时要求高转矩,高速行驶时要求低转矩,具有大变速范围。 电池管理系统 相比前两个控制器,电池管理系统......
    (FCE-ECU)、蓄电池管理系统(BMS)、动力控制系统(PCU)及整车控制系统(VMS)组成。 1、发动机管理系统。燃料电池发动机管理系统按整车控制器的功率设定值控制燃料电池发动机的功......
    800V扁线电机部分核心技术解析;《动力电池管理系统核心算法(第2版)》结合作者多年来的研究实践,阐述了电动汽车动力电池管理系统的特点及其核心算法开发的关键技术问题,详细介绍了动力电池测试、建模......
    是纯电动汽车的三大核心部件。   电池组和动力电池管理系统  新能源电动车的动力来源是动力电池动力电池的电压大多在100~400V,输出电流可达300A,动力电池的容量影响整车的续航里程,同时......
    组进行有效的监控、保护、能量均衡和故障警报,进而提高整个动力电池组的工作效率和使用寿命。 所有电池管理系统共有三个主要目标: 1、保护电池或电池免受损坏 2、延长电池寿命 3......
    组,深度放电会对电池造成损耗,如果在深度放电后还按照常规电压和电流进行充电,会对电池造成进一步的损耗。   动力电池组 因此在车辆上固定安装一台可根据电池管理系统......
    量回收过程中,电机控制器还要负责将驱动电机副扭矩产生的交流电进行整流回充给动力电池。  03 电池管理系统   相比前两个控制器,电池管理系统相对比较“年轻”,其主要功能包括:电池物理参数实时监测、在线......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>