光电容积脉搏波(PPG)远程病人生命体征监护仪的电源子系统——第一部分

发布时间:2023-03-22  


本文引用地址:

您将会学到什么知识:

●   了解如何根据PPG系统要求选择电源配置。

●   审查分立(第一部分)和集成设计(第二部分)的开关模式电源参考电路的实现。

●   理解电源性能测试方法,以在不同器件用例和瞬态加载条件下验证系统。

●   获取检查清单以验证实现。

●   获得故障排除知识以解决实施问题。

本文分两部分,介绍经过预先验证的针对光电容积脉搏波(PPG)远程病人生命体征监测应用的电源电路设计,包括具有出色系统信噪比性能的生物传感器。PPG器件可用来测量血容量的变化,从中得出血氧水平和心率等生命体征信息。第一部分说明提供出色性能的分立电源电路设计解决方案,其使用MAX86171光脉冲血氧仪和心率传感器模拟前端(AFE)。第二部分说明用于空间受限应用的集成解决方案。

开关模式电源(也称为SMPS或DC-DC转换器)通常用于可穿戴医疗健康应用,其原因包括尺寸考虑和能效比等。设计人员可以使用这些电源来创建使用寿命更长的电池供电产品。遗憾的是,设计人员仍然需要选择适当的SMPS器件,然后创建合适的电路板布局,以保护系统中生物传感器件的性能。

为了简化和加快开发流程,ADI公司提供经过预先验证(即设计、构建和测试)的电源子系统电路设计,以保障每个生物传感AFE器件的信噪比(SNR)性能。本文详细介绍这些电源电路,每个示例都附有验证检查清单和故障排除指南,以在有需要的时候帮助电路设计人员。图1显示了许多远程病人监测应用中都会看到的标准电源框图。

设计限值

输入

输出(VDIG、VANA、VLED

噪声,RTO

VIMIN

VIMAX

VOMIN

VOMAX

VPP(max)

3.0V1

4.2V1

1.6V

2.0V

30mVPP

2.0V2

3.4V2

1.6V

2.0V

30mVPP


4.7V

5.3V

20mVPP

注释:

二次电池(LiPo)

一次电池(锂纽扣电池)

设计配置

设计配置

电池实现

电路板区域布局注意事项

分立

一次(纽扣电池)
  二次(Li & LiPo)

实现单独的分立电路。

集成

二次(Li & LiPo)

使用单个集成电路以使电路板面积要求最小化。

仅支持二次电池。

分立设计描述

这种DC-DC转换器设计可调节三输出电源轨,以用于远程病人生命体征监测子系统。该电路提供适当的电压和负载调整率,同时保持低输出噪声水平以维护生物传感SNR性能,电源采用可充电锂聚合物电池或一次锂电池。图2显示了使用分立电源器件的PPG子系统。

关键元件

标识

元件

描述

U1

DC-DC转换器

电源转换器件(MAX38640A和MAX20343H)

L1

2.2μH电感

等效串联电阻(ESR)电感(能量)储存元件1

C1

22μF电容

低ESR电容(能量)储存元件1

L1和C1是特别选择的无源元件,对于DC-DC转换器(也称为开关模式电源)的性能至关重要。

使用nanoPower降压转换器的1.8V SMPS电路

以下电路基于MAX38640A nanoPower降压转换器(图3),显示了在远程病人生命体征监测应用中正确操作SMPS器件的典型输入和输出电源电平。如图3所示,可以使用数字万用表(DMM)探测输入和输出端口,以验证电源电压电平。电源输出电平可能因为各种因素而不同,例如:

电池放电。

负载变化(器件模式变更、器件从睡眠模式唤醒等)。

1.8V SMPS电路验证检查清单

以下电路验证检查清单(图4)旨在帮助设计人员对1.8V SMPS电路印刷电路板组件进行各项电气基准检查。该清单也可用作产品测试的模板。

下表可用作检查清单来验证模拟或数字1.8V SMPS电路的操作,该电路使用MAX38640A器件并连接到一个生物传感电路负载。

步骤

操作

程序步骤

测量

需要帮助?

1

检查输入直流电源

 

LP401230 LiPo电池

 

CR2032锂纽扣电池

测量电池两端的电压

读数范围:

 

 

 

3.0V – 4.2V

 

2.0V – 3.4V

故障排除说明

2

检查输入直流电源

 

Coin Batt

CR2032锂纽扣电池

测量CIN两端的电压

读数范围:

 

 

 

3.0V – 4.2V

 

2.0V – 3.4

3

检查VOUT直流电平

测量COUT两端的电压

读数范围:

1.71V – 1.89V

4


测量负载两端的电压

读数范围:

1.71V – 1.89V

5

检查输出噪声电平

使用猪尾引线10x单端探头或差分有源探头

纹波噪声电平应 < 20mVPP

MAX38640A(1.8V输出)SMPS电路故障排除

如果1.8V SMPS电路的操作出现问题,以下电路故障排除说明(图5)可为设计人员提供帮助。本指南解决实现此类开关模式电源时可能遇到的最常见问题。

MAX38640A SMPS电路故障排除:

第1步 – 检查输入电压:使用内部阻抗为1MΩ或更大的数字万用表(DMM)(例如Fluke 87)测量MAX38640A器件输入端的电压。务必将负极“黑色”引线连接到地,正极“红色”引线连接到器件的输入“IN”引脚。如果输入引脚不易接近,请将引线穿过输入电容CIN。

使用下表诊断和解决相关问题:

输入电压读数

潜在原因

操作

注释

零伏/无读数

电池未充电。

电池有缺陷。

 

 

断开电池并检查电压。如果读数为0V,请给电池充电。

如果无法充电,请更换电池。


无电池连接(IN或GND线)。

断开电池,测试从电池连接器到器件输入的电导率。

PCB可能有开路。


输入电容对地短路

断开电池,检查电容的连续性。

电容损坏;

PCB可能有短路。


EN引脚接地。

断开电池,测试从EN引脚到地的电导率。

EN引脚需要绑定高电平才能正常工作。

读数 < 3.0V

(LiPo电池)

读数 < 2.0V

(锂离子电池)

电池电量低

电池有缺陷。

断开电池并检查电压。如果读数低于2.8V,请给电池充电。

如果无法充电,请更换电池。

3.0V ≥ 读数 ≤ 4.2V

(LiPo电池)

2.0V ≥ 读数 ≤ 3.4V

(锂离子电池)


无操作。

输入电压正常,继续第2步。

读数 ≥ 4.2V

(LiPo电池)

读数 ≥ 3.4V

(锂离子电池)

电池有缺陷。

更换电池。


第2步 – 检查电感信号波形:使用示波器或数字存储示波器(DSO)探测MAX38640A器件上的LX引脚。如果输入引脚不易接近,请将探头放在电感端电容上。

注释:建议使用最小带宽为200MHz的示波器和探头。

如果电路在轻负载(即小于50mA)下运行,则波形应如图6所示。

如果电路在重负载下运行,则波形应为方波,上升沿和下降沿的振铃最小,如图7所示。

方波幅度应约等于输入电池电压。方波底电压应在地以下约200mV至300mV(例如-250mV)。占空比与输出电压成正比。因此,当产生1.8V的输出电压时,3.6V的输入电池电压将具有大约50%的占空比。图8显示了占空比和输出电压的关系。

与理想方波的偏差可用于有效诊断和解决许多问题。

使用下表诊断和解决相关问题:

输入波形

潜在原因

操作

注释

幅度不正确

电感开路。

IN引脚开路

EN开路或接地

断开电池并检查与DMM的所有连接。

如果需要,修理PCB。

占空比不正确(不与输出电压相关)

RSEL的值不正确(768KΩ)。外部电阻损坏。

断开电池,使用DMM(R测量)检查RSEL 

更换为正确阻值的电阻。


RSEL引脚开路(Vo = 2.5V)。

检查2.5V的输出。

断开电池,测试从电阻到RSEL引脚的电导率。

PCB可能有开路。


RSEL引脚对地短路(Vo=0.8V)

检查0.8V的输出。

断开电池并测量电容两端的电阻。

PCB可能有短路。

波形失真

圆形上升沿

电感连接不良

重新连接电感。    更换电感。

连接不良会导致线路电阻较高

第3A步 – 检查输出直流电压:使用内部阻抗为1MΩ或更大的DMM(例如Fluke 87)测量MAX38640A器件输出端的电压。务必将负极“黑色”引线接地,正极“红色”引线连接到器件的输出“OUT”引脚。如果输出引脚不易接近,请将引线穿过输出电容COUT。

使用下表诊断和解决相关问题:

输出电压读数

潜在原因

操作

注释

零伏/无读数

从SMPS到COUT无连接

断开电池,测试从输出到COUT的电导率

PCB可能有开路。


输出电容对地短路

断开电池,检查电容的连续性。

PCB可能有短路。

读数过低

(< 1.71 VDC)

电感值错误

电感饱和

RSEL值错误

断开电池,检查电感和/或电阻值。


1.71V ≥ 读数 ≤ 1.89


无操作。

可工作。

读数过高

(> 1.89 VDC)

RSEL值错误

断开电池并检查RSEL值。


第3B步 – 检查输出交流电压:使用示波器或DSO,通过探测MAX38640A器件上的OUT引脚来测量输出纹波(AC)。为了正确测量输出并最大限度地减少射频拾取,建议使用10x猪尾引线探头。也可以使用差分有源探头以进一步降低环境噪声。

注释:建议使用最小带宽为200MHz的示波器和探头。

如果电路工作正常,波形应该是1.8VDC输出,上面叠加一个小纹波波形。图9显示了纹波波形。

使用下表诊断和解决相关问题:

输入波形

潜在原因

操作

注释

纹波幅度过高(> 20mVpp)

电容值错误;电容有缺陷。

断开电池并检查与DMM的所有连接;测量电容值。


纹波频率与VLX 方波频率不匹配

轻负载

检查负载


宽带噪声过高

负载过大;环境噪声。

检查负载和环境噪声。

在输出端使用猪尾引线10x探头或有源差分探头以降低环境噪声。

跃迁尖峰过高(> 30mVp)

负载电感;

输入电流不足。

检查线路电感;用示波器检查输入电流。


使用低噪声降压-升压转换器的5.0V SMPS电路

以下电路基于MAX20343H低噪声降压-升压转换器,显示了在远程病人生命体征监测应用中正确操作SMPS器件的典型输入和输出电源电平。如图10所示,可以使用DMM探测输入和输出端口,以验证电源电压电平。电源输出电平可能因为各种因素而不同,例如:

电池放电。

负载变化(器件模式变更、器件从睡眠模式唤醒等)。

5.0V SMPS电路验证检查清单

以下电路验证检查清单(图10)旨在帮助设计人员对5.0V SMPS电路印刷电路板组件进行各项电气基准检查。该清单也可用作产品测试的模板。

下表可用作检查清单来验证模拟5.0V SMPS电路的操作,该电路使用MAX20343H器件并连接到一个生物传感电路负载。

步骤

操作

程序步骤

测量

需要帮助?

1

检查输入直流电源

 

LP401230 LiPo电池

CR2032锂纽扣电池

测量电池两端的电压

读数范围:

 

 

3.0V – 4.2V

2.0V – 3.4

故障排除说明

2

检查输入直流电源

 

LP401230 LiPo电池

CR2032锂纽扣电池

测量CIN两端的电压

读数范围:

 

 

3.0V – 4.2V

2.0V – 3.4

3

检查Vout直流电平

测量COUT两端的电压

读数范围:

4.75V – 5.25V

4

检查Vout直流电平

测量负载两端的电压

读数范围:

4.75V – 5.25V

5

检查输出噪声电平

使用猪尾引线10x单端探头或差分有源探头

纹波噪声电平应 < 20mVpp

5.0V SMPS电路故障排除指南

如果5.0V SMPS电路的操作出现问题,以下电路故障排除说明(图11)可为设计人员提供帮助。本指南解决实现此类开关模式电源时可能遇到的最常见问题。

MAX20343H SMPS电路故障排除:

第1步 – 检查输入电压:使用内部阻抗为1MΩ或更大的DMM(例如Fluke 87)测量MAX20343H器件输入端的电压。务必将负极“黑色”引线连接到地,正极“红色”引线连接到器件的输入“IN”引脚。如果输入引脚不易接近,请将引线穿过输入电容CIN。

使用下表诊断和解决相关问题:

输入电压读数

潜在原因

操作

注释

零伏/无读数

电池未充电。

电池有缺陷。

 

断开电池并检查电压。如果读数为0V,请给电池充电。

如果无法充电,请更换电池。


无电池连接(IN或GND线)

断开电池,测试从电池连接器到器件输入的电导率。

PCB可能有开路。


输入电容对地短路

断开电池,检查电容的连续性。

PCB可能有短路。


EN引脚(SDA/EN)接地

断开电池,测试从电池连接器到器件输入的电导率。

EN引脚需要绑定高电平才能正常工作。

读数 < 2.8V

电池电量低

电池有缺陷

断开电池并检查电压。如果读数低于2.8V,请给电池充电。

如果无法充电,请更换电池。

2.8V ≥ 读数 ≤ 4.2V


无操作。

输入电压正常。继续第2步。

读数 ≥ 4.2V

电池有缺陷

更换电池。


第2步 – 检查电感信号波形:使用示波器或DSO探测MAX20343H器件上的HVLX引脚。如果输入引脚不易接近,请将探头放在电感端电容上。

注释:建议使用最小带宽为200MHz的示波器和探头。

如果电路正常工作,则波形应为脉冲波,上升沿和下降沿的振铃最小,如图12所示。

500ns脉冲波幅值应约等于输入电池电压。脉冲波底电压应在地电位的100mV以内。脉冲波的输出频率和占空比与负载电流成正比。图13和14显示了不同负载条件下的输出波形和信号频率。

与理想方波的偏差可用于有效诊断和解决许多问题。

使用下表诊断和解决相关问题:

输入波形

潜在原因

操作

注释

幅度不正确

电感开路。

IN引脚开路

EN开路或接地

断开电池并检查与DMM的所有连接。

如果需要,修理PCB。

占空比不正确(不与输出电压相关)

RSEL的值不正确(6.65KΩ)。外部电阻损坏。

断开电池,使用DMM(R测量)检查RSEL

更换为正确阻值的电阻。


RSEL引脚开路(Vo=3.3V)

检查3.3V的输出

断开电池,测试从电阻到RSEL引脚的电导率。

PCB可能有开路。


RSEL引脚对地短路(Vo=5.5V)

检查5.5V的输出

断开电池并测量电容两端的电阻。

PCB可能有短路。

波形失真

圆形上升沿

电感连接不良。

重新连接电感。更换电感。

连接不良会导致线路电阻较高

第3A步 – 检查输出直流电压:使用内部阻抗为1MΩ或更大的DMM(例如Fluke 87)测量MAX20343H器件输出端的电压。务必将负极“黑色”引线接地,正极“红色”引线连接到器件的输出“OUT”引脚。如果输出引脚不易接近,请将引线穿过输出电容COUT。

使用下表诊断和解决相关问题:

输出电压读数

潜在原因

操作

注释

零伏/无读数

从SMPS到COUT无连接

断开电池,测试从输出到COUT的电导率

PCB可能有开路。


输出电容对地短路

断开电池,检查电容的连续性。

PCB可能有短路。

读数过低

(< 4.75 VDC)

电感值错误

电感饱和

RSEL值错误

断开电池,检查电感和/或电阻值。


4.75V ≥ 读数 ≤ 5.25V


无操作。

可工作。

读数过高

(> 5.25 VDC)

RSEL值错误

断开电池并检查RSEL值。


第3B步 – 检查输出交流电压:使用示波器或DSO,通过探测MAX20343H器件上的OUT引脚来测量输出纹波(AC)。为了正确测量输出并最大限度地减少射频拾取,建议使用10x猪尾引线探头。也可以使用差分有源探头以进一步降低环境噪声。

注释:建议使用最小带宽为200MHz的示波器和探头。

如果电路工作正常,波形应该是1.8VDC输出,上面叠加一个小纹波波形。图15显示了纹波波形。

使用下表诊断和解决相关问题:

输入波形

潜在原因

操作

注释

纹波幅度过高

电容值错误;电容有缺陷

断开电池并检查与DMM的所有连接;测量电容值


纹波频率与VHVLX 脉冲波频率不匹配

轻负载

检查负载


宽带噪声过高

负载过大;环境噪声。

检查负载和环境噪声。

 在输出端使用猪尾引线10x探头或有源差分探头以降低环境噪声。

 

跃迁尖峰过高

负载电感;

输入电流不足

检查线路电感;用示波器检查输入电流。


结语

本文分为两部分,以上内容是第一部分,介绍了配合基于MAX86171的PPG远程病人生命体征监护仪使用的预验证分立电源电路。这些电源电路也可以配合基于MAX86141的PPG器件使用。

本文第二部分介绍配合基于MAX86171和基于MAX86141的PPG远程病人生命体征监护仪使用的预验证集成电源电路。

欲了解分立和集成电源实现方案的相应验证测试数据,请访问Maxim Integrated(现为ADI公司一部分)网站:

“适用于远程病人生命体征监护仪的电源子系统”。

参考文献:

用于生命体征监护仪的电源子系统

设计高精度、可穿戴的光学心率监护仪

关于作者

Felipe Neira

应用技术团队高级成员 - 培训和技术服务

Maxim Integrated(现为ADI公司一部分)

作者简介:Felipe Neira是Maxim Integrated(现为ADI公司一部分)的应用工程师。他喜欢钻研便携式和可穿戴解决方案,侧重于健康传感器的电池电源管理。此外,他为ADI公司的所有广泛市场产品提供技术支持。Felipe毕业于加利福尼亚大学圣克鲁斯分校,获电气工程学士学位(BSEE),毕业后不久即加入本公司。

Marc Smith

应用技术团队主要成员

Maxim Integrated(现为ADI公司一部分)

作者简介:Marc Smith是Maxim Integrated(现为ADI公司一部分)的健康与医疗生物传感应用技术团队的成员。他是MEMS和传感器技术领域的行业专家,在针对多个市场的传感器产品和电子开发方面拥有超过30年的经验。Marc拥有12项专利,并撰写了十多份出版物。他获得了加利福尼亚大学伯克利分校的电气工程学士学位(BSEE)和加利福尼亚圣玛丽学院的工商管理硕士学位(MBA)。

文章来源于:电子产品世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>