求一种基于STM32G4芯片TIM+SPI+DMA应用设计方案

发布时间:2024-09-14  

现在有STM32用户使用STM32G474R芯片开发产品,其中用到TIM1做电源驱动,TIM1工作在中心对齐计数模式。现在有个应用需求,就是希望在TIM1每个周期的下图箭头所指时刻触发外部ADC器件的采样,等ADC完成转换后并通过SPI接口将结果取回来。但有个要求,从触发时刻【下图中的A点】开始到把ADC结果取回来这个过程不能有CPU的参与。

79944cd8-e402-11ee-a297-92fbcf53809c.png

该用户觉得原理上可行,但经一番折腾感觉相应硬件时序的实现和DMA传输都遇到了些障碍。就像拼魔方一样,规则和需求虽然很清晰,基本动作也简单,但真要转成功不太容易。

我们来进一步看看他目前所用ADC器件跟STM32G4在硬件时序上有哪些关联与要求。下图黄色栏里记录的是外部ADC器件用到的几个信号,绿色栏记录的是它跟STM32G4芯片相连的信号或管脚。图中红色信号代表从ADC器件给到STM32的,蓝色信号就是STM32芯片给到ADC器件的。

79a7699e-e402-11ee-a297-92fbcf53809c.png

目前大致时序要求是,在TIM1每个计数周期的A点,STM32首先产生两个ADC启动信号,即上图中的两个下沿窄脉冲。等ADC转换完成后根据ADC器件的BUSY信号的下沿到来,启动STM32的SPI接收多个数据,显然这里需要DMA出场。

现在的问题就是,如何将A点跟ADC启动信号同步关联起来?如何实现那两个启动脉冲?然后,ADC转换完成信号出现后又如何跟STM32这边的SPI接收关联起来?记住,这整个过程不让CPU插手。

我这里提供一个方案供参考。因为下面的验证测试仅仅基于STM32G4芯片本身,并没有连接上相应的ADC器件。所以,下面测试验证过程中,我通过STM32G4芯片模拟产生ADC器件的Busy信号。另外用到SPI1和SPI2,SPI1作为STM32G4端的主SPI,负责从外部ADC器件读回结果。SPI2模拟ADC器件那边的从SPI设备,负责发送结果到STM32G4芯片。

我让TIM2跟TIM1同步启动,并设置相同的计数周期。TIM2计数到对应于TIM1的A点时产生OC1事件去同步启动TIM3和TIM4,TIM3基于两个通道输出两路ADC启动脉冲后停下来,TIM4用来模拟产生ADC器件的BUSY信号。BUSY信号接到STM32G474RE芯片的PC2脚,基于PC2脚下沿触发的外部中断事件再作为STM32G474SPI1的DMA发送的同步信号。

我将上面描述的内容用下图示意出来,即从A点开始到产生Busy信号的各种信号前后关系时序图,这样便于观察和理解。具体参数可以根据实际情况适当调整。

79b4fa0a-e402-11ee-a297-92fbcf53809c.png

要产生这个时序关系,所需核心知识点就是TIMER的主从触发与同步以及TIMER不同输出比较模式的特性,并加以活用。

解决了前面几个信号间的时序关系,还不能万事大吉。我们还需要对DMA以及DMAMUX的有关原理和SPI应用相关知识点有着清晰地把握,才能解决眼前的问题。

下面我会把全部配置及用户代码都贴出来供参考,这里就没法逐字逐句解说了。

原理弄清晰后,我们就可以使用STM32开发神器-STM32CubeMx图形化工具进行初始化配置。顺便说明下,这里提到的方案不是一成不变的,能达到目的即可。尤其有关TIMER的具体实现方式往往灵活多样。

一、有关TIM1的配置。它其实不是这里的重点,这里主要是基于它再构造一个跟它同步启动的辅助定时器2。TIM1的主要任务是做它该做的驱动就好。

79c6e2ba-e402-11ee-a297-92fbcf53809c.png

二、定时器2的配置。它被TIM1同步触发启动。计数周期跟TIM1一样,并在特定计数点【前面提到的对应于A点的位置】产生OC1比较事件。

79ccf79a-e402-11ee-a297-92fbcf53809c.png

三、定时器3的配置,它被TIM2触发启动,工作在单脉冲模式。计数周期根据自身信号特征和时序要求来拟定。使用通道1和通道2来产生两路相同的ADC启动信号。

79e711fc-e402-11ee-a297-92fbcf53809c.png

四、定时器4的配置,也是被TIM2触发启动,工作在单脉冲模式。计数周期根据自身信号特征和时序要求来拟定。这里使用其通道1模拟产生ADC器件的BUSY信号。

7a954c68-e402-11ee-a297-92fbcf53809c.png

五、SPI的配置。SPI1作为主设备,负责从ADC器件读取结果到RAM。SPI2模拟ADC器件的从设备,负责发送ADC结果给主设备。我这里启用了SPI1收、发的DMA传输,并且DMA发送使用EXTI2事件做同步。另外我也启用了SPI2的DMA发送功能。这里重点关注下SPI1发送功能的DMA配置。

7ae3adcc-e402-11ee-a297-92fbcf53809c.png

需要重点关注的基本配置就是上面这些,其它有关时钟、EXTI2配置就不贴图了。创建工程后,添加用户代码。这里需添加的用户代码比较简单。见下图,清一色的启动代码,寥寥几行。

7aff7048-e402-11ee-a297-92fbcf53809c.png

因为这里只需接收数据,MOSI脚释放出来无妨,所以才有了上面截图的第一行,不做重点关注。下图是我验证测试过程中的实际波形图:

7b191660-e402-11ee-a297-92fbcf53809c.png

上图中的黄色波形是TIM1的输出波形。两路绿色波形是STM32G4给到ADC器件的启动信号。紫色波形是STM32G4模拟产生的BUSY信号。

我们不妨看看基于上面配置及代码的验证结果。每次读取4个数据回来。下面两图是基于两次不同的模拟测试结果截图。TxData是从SPI2发过来的数据,RxData是主SPI1收到的数据。

7b2e4224-e402-11ee-a297-92fbcf53809c.png

7b3bf342-e402-11ee-a297-92fbcf53809c.png


文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>