​了解使用短路、开路、负载和直通终端进行射频校准

发布时间:2024-03-26  

在这篇文章中,我们通过走过校准的步骤并检查其参考标准的潜在非理想性来结束我们对的讨论。

本文引用地址:

被称为()的强大仪器在射频和微波应用中是必不可少的。然而,在使用之前,必须通过执行用户校准来校正测试设置的系统误差和缺陷。

上一篇文章介绍了短开路加载直通()方法,这是最常见的用户校准技术之一。在本文中,我们将更详细地解释校准方法是如何工作的。我们还将讨论在现实世界SOLT校准中使用的开路和短标准的非理想性。深入了解这些概念将有助于VNA用户更自信地分析测量结果。

找到错误术语是成功的关键

正如我们在本系列文章前面所讨论的,SOLT校准方法依赖于12项误差模型。该模型考虑了由有限方向性、反射跟踪、端口匹配误差等引起的误差。图1显示了它的正向和反向子模型。

12项误差模型分为两个子模型。

1.png图1。12项误差模型由6项正向子模型(a)和6项反向子模型(b)组成。图像由Mini Circuits提供

为了从原始测量值中获得DUT的真实S参数,我们需要校正上面建模的所有误差。校正过程包括找到12个误差项的值,并将它们应用于数学公式。尽管这些误差校正的数学计算相对简单,但确定误差项需要准确的标准和测量,这是一项具有挑战性的任务。

一些应用程序可能会对查找误差项带来额外的挑战。例如,在低温、极端功率水平或使用异常连接器的情况下,确定DUT的误差项可能极其困难。尽管如此,一旦误差项已知,需要求解的方程就相对简单。

为了更好地了解校准过程及其要求,让我们更仔细地检查SOLT校准。

SOLT校准过程

SOLT校准使用短路、开路、Load和Through标准来确定测量系统的误差项。负载、开路和短路标准通常被收集到校准试剂盒中;一些套件,如图2中的套件,也包括Through标准。

Copper Mountain Technologies的S2611校准套件。

2.png

图2:S2611校准套件。图片由铜山科技提供

让我们回顾一下图1中的12项误差模型。为了找到图1中正向子模型的误差项,我们使用以下三个步骤:

应用一个端口校准。

确定隔离。

进行直通测量。

虽然我们只会遍历正向测量的过程,但可以应用相同的三步程序来查找反向子模型的误差项。我们所要做的就是改变我们在方程中插入的误差项。 

步骤1:应用单端口校准

在这一步骤中,前向子模型的输入反射系数(ΓIn)是针对三种不同的标准测量的:短路、开路和Load。VNA测量的输入反射系数与标准的实际反射系数(ΓL)通过以下方程相关:

3.png

公式1

通过测量ΓL的三个不同值,我们得到了三个独立的方程,每个方程都包含三个未知误差项e00、e10e01和e11。在理想情况下,短路、开路和Load标准应分别产生–1、1和0的ΓL值。当然,我们并不是生活在一个理想的世界里。我们将很快讨论现实世界短裤和公开赛的反射系数是什么样子的。

步骤2和3:确定隔离和直通测量

为了找到泄漏项(e30),我们将匹配的负载连接到VNA的端口1和端口2,并测量S21参数。这是一个可选步骤——现代VNA端口之间的泄漏通常可以忽略不计,因此我们可以将泄漏项设置为零,而不会产生重大后果。

最后,我们使用Through标准将VNA的端口1和端口2连接在一起。通过测量S11和S21参数,我们获得了两个独立的方程来确定剩余的两个误差项(e22和e10e32)。

总结如下:

在每个端口对单端口标准(短、开路和负载)进行三次测量,总共产生六个独立的方程。

一个完全表征的Through标准总共提供了四个方程——每个测量方向两个。

通过将匹配的负载连接到端口1和端口2,可以找到这两个隔离项。这给了我们另外两个方程。

整个校准过程总共产生6+4+2=12个独立方程,用于求解模型中的12个误差项。然而,我们不太可能需要自己解决这些问题——大多数VNA都有支持SOLT校准的内置软件。我们只需要连接适当的标准,让VNA进行校准。

通常,我们可以假设负载标准是一个完美的50Ω阻抗。通常还给出了直通标准的延迟和损耗。正如我们很快就会看到的那样,定义开路和短路标准可能会有点棘手。

定义开路标准

图3展示了内螺纹开口的物理结构。中心导线的左侧是典型的内螺纹连接器配置,使用弹簧指形插座。中心导线的右侧保持未连接状态,导致开路。

4.png

•图3。。图片由Gregory Bonaguide和Neil Jarvis提供

注意,在参考平面和开路的实际实现之间有一条短长度的传输线。因为传输线增加了延迟,在反射信号中产生了一个依赖于频率的相位,所以这个标准可以更精确地被称为“偏置开度”。然而,几乎所有的开度标准实际上都是偏置开度,所以通常不值得进行区分。

在内部和外部导体之间的中心导体开口端形成边缘电容(Ce)。为了让生活变得更加复杂,这种电容也依赖于频率;影响标准的反射系数,不能忽略不计。

在低频率下,固定的电容值(C0)可能就足够了。对于高于几百MHz的频率,电容随频率的变化变得更加明显。大多数虚拟网络分析使用三阶多项式方程式来描述边缘电容随频率的变化:

5.png

•方程式2。

 

系数C0、C1、C2和C3取决于具体的开路标准的几何结构和材料成分。系数应采用适当的单位,以便最终值具有法拉的单位。例如,如果C0以毫微微法拉为单位,那么C1应以fF/Hz为单位,C2应以fF/Hz2为单位,以此类推。

图4显示了典型的开路标准的参数,因为它们将在Keysight的一个VNA中指定。

典型开路标准的参数。

6.png

图4。典型开路标准的参数。图像由Keysight提供

正如你所看到的,传输线的参数——延迟、损耗和特性阻抗——与边缘电容的系数一起指定。对于一些校准套件模型,使用相同的三阶多项式和延迟来描述校准标准。套件制造商依靠精密制造和机械加工来实现这一点。即便如此,一些错误仍将持续存在。

定义校准的另一种方式是使用来自非常精确校准的VNA的反射与频率测量的数据库。数据库方法比多项式方法准确得多,但成本也高得多。

史密斯圆图上的开路标准

理想的开路位于史密斯圆图圆周上相位角为零的单个点上。然而,如果我们在给定的频率范围内测量开路标准的反射系数,我们得到的是一个弧,而不是一个点。我们可以在图5中看到这一点,图5显示了S2611校准套件的开路标准的测量反射系数。

史密斯圆图显示了S2611的开路标准的测量反射系数。

7.png

图5。史密斯圆图显示了S2611套件的开路标准反射系数的测量值。图片由铜山科技提供

测量的反射系数呈弧形。当频率较低时,它从零的相位角开始,然后随着频率的增加而顺时针移动。这是由于两个因素造成的:

开路的边缘电容。

实际开路之前出现的短传输线。

确定短期标准

图6显示了母短节的物理结构。中间导线与图示右侧外导线短路。

8.png

•图6。。图片由Gregory Bonaguide和Neil Jarvis提供

与开路标准一样,在标准的实际实施之前,传输线的长度很短。。与开路一样,几乎所有短缺都是如此——我们只是在这里进行区分,以解释为什么标准的反射信号经历频率相关的相位变化。

短路位置产生电感(Le)。就像我们在前面章节中讨论的边缘电容一样,这种电感与频率相关。我们可以忽略低频和大尺寸连接器(≥7 mm)的Le。在更高的频率和小(≤3.5 mm)连接器中,我们至少需要一个三阶多项式来描述电感随频率的变化:

9.png

•方程式3。

图7显示了短标准参数的一些典型值。

典型短标准的参数。

10.png

•图7。典型短标准的参数。图片由Keysight提供

史密斯圆图上的短标准

在史密斯圆图上,测得的短路反射系数显示为一个弧形,在低频时以180度的相位角开始,随着频率的增加顺时针移动。这是由于短路的寄生电感和传输线的长度使其成为一个偏置短路。图8显示了S2611校准工具包的短路的测量反射系数

史密斯圆图显示了S2611的短路标准的测量反射系数。

11.png

图8。史密斯圆图显示了S2611试剂盒短路标准的测量反射系数。图片由铜山科技提供 

测量校准标准

假设我们在用户校准中使用开路和短路标准。如果我们在校准后使用VNA来测量这些标准的反射系数,我们还会在史密斯圆图上看到圆弧吗?

总之,是的。大多数真正的空位和空位实际上都是偏置空位和偏置空位,所以它们的响应对应于史密斯圆图上的一个弧,而不是一个点。有关原因的更多信息,请参阅“通过示例学习——使用阻抗史密斯圆图”中的示例4和5

校准过程不会改变这一点。它只会消除测试设置中的缺陷,并确定正确的误差项,以将标准的测量响应映射到三阶多项式描述中预期的响应。事实上,即使标准在某种程度上受到轻微损坏,并且没有产生制造商规定的特性,VNA也会调整结果,使其与多项式描述一致。

因此,您应该通过测量并非来自您在校准过程中使用的试剂盒的开路或短路标准来验证您完成校准的结果。这个过程根据标准品的测量响应产生误差项——如果我们从同一试剂盒中重新测量标准品,我们可能会错误地认为校准是正确的。VNA已经进行了调整,以符合该标准的特点。

通过使用不同的标准,我们可以看到VNA对未参与校准过程的设备的测量效果。这使我们能够发现校准过程中可能发生的任何错误或不一致,如不正确的标准定义或松动的连接。

总结

在这篇文章中,我们重点讨论了SOLT校准——校准方法本身及其开路和短路标准的缺陷。尽管SOLT方法是校准VNA最常见的方法之一,但它绝不是唯一的方法。也存在其他方法,如TRL(穿透反射线)和LRM(线反射匹配)校准。每种校准方法都有其自身的优点和缺点,具体取决于:

DUT的类型和频率范围。

标准的可用性和质量。

所需的校准精度和速度。

本文总结了我关于VNA和VNA校准的系列文章。我希望它能帮助你对相关概念有一个基本的理解,如果你想探索其他校准方法,你可以用它来探索。

本系列的前几篇文章按出版顺序如下:

射频应用定向耦合器简介

了解定向耦合器中的射频功率测量误差

了解的内部工作

了解动态范围和伪自由动态范围的意义

如何估计和提高的动态范围

VNA校准技术简介

了解VNA校准的极限

了解VNA测量的12项误差模型和SOLT校准方法


文章来源于:电子产品世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>