深度解析STM32驱动LCD原理

发布时间:2024-03-07  

TFTLCD即薄膜晶体管液晶显示器。它与无源TN-LCD、STN-LCD的简单矩阵不同,它在液晶显示屏的每一个像素上都设置有一个薄膜晶体管(TFT),可有效地克服非选通时的串扰,使显示液晶屏的静态特性与扫描线数无关,因此大大提高了图像质量。

5e890544-a4ba-11eb-aece-12bb97331649.png

01驱动流程

使用FSMC驱动LCD

关于FSMC,把数据写入相应的地址,FSMC就会把地址从FSMC_A出去,写入的数据会会从FSMC_D发出去。至于片选等信号线都是自动的。读的话,直接读相应的地址,就会拿到改地址上的数据。

FSMC驱动外部SRAM时,外部SRAM的控制一般有:

地址线(如A0~A25)

数据线(如D0~D15)

写信号(WE,即WR)

读信号(OE,即RD)

片选信号(CS)

如果SRAM支持字节控制,那么还有UB/LB信号。

而TFTLCD的信号包括:RS(命令数据标志位)、D0~D15、WR、RD、CS、RST和BL等,其中真正在操作LCD的时候需要用到的就只有:

CS

WR

RS

D0~D15

RD

其操作时序和SRAM的控制完全类似,唯一不同就是TFTLCD有RS信号,但是没有地址信号。

TFTLCD通过RS信号来决定传送的数据是数据还是命令,本质上可以理解为一个地址信号,比如我们把RS接在A0上面,那么当FSMC控制器写地址0的时候,会使得A0变为0,对TFTLCD来说,就是写命令。而FSMC写地址1的时候,A0将会变为1,对TFTLCD来说,就是写数据了。这样,就把数据和命令区分开了,他们其实就是对应SRAM操作的两个连续地址。当然RS也可以接在其他地址线上。

因此,可以把TFTLCD当成一个SRAM来用,只不过这个SRAM有2个地址,这就是FSMC可以驱动LCD的原理。

02标准8080接口

8080总线又叫Intel总线,大致来说,Intel总线的控制线有四根,RD写使能,WR读使能,ALE地址锁存,CS片选。

8080中:有RD(read),WR(Write)脚,RD,WR可以同时为高,不能同时为低!!RD为低时表示要从LCD中读出数据在D0-D7脚上,WR为低时表示:将当前D0-D7上的数据写入LCD

模块的8080并口读/写的过程为:

先根据要写入/读取的数据的类型,设置RS为高(数据)/低(命令),然后拉低片选,选中液晶IC,接着我们根据是读数据,还是要写数据置RD/WR为低,然后:

1.读数据:在RD的上升沿,读取数据线上的数据(D[15:0]);

2.写数据:在WR的上升沿,使数据写入到液晶IC里面;

5ef267b4-a4ba-11eb-aece-12bb97331649.png

▲8080并口写时序

5f303ddc-a4ba-11eb-aece-12bb97331649.png

▲8080并口读时序在NXP的UsingFlexIO to Drive 8080 Bus Interface LCDModule文档中同样也提到了8080接口(P6),我找到的介绍8080接口的官方文档,就只有NXP这个文档。https://pan.baidu.com/s/1oYThPiVnc-_WSAyVy_vG2Q 提取码:i4vu(提示:公众号不支持外链接,请复制链接到浏览器下载)

5f658eb0-a4ba-11eb-aece-12bb97331649.png

写时序

5fc25dde-a4ba-11eb-aece-12bb97331649.png

读时序

03使用FSMC驱动8080接口

5fe7850a-a4ba-11eb-aece-12bb97331649.png

读时序

6023c1a0-a4ba-11eb-aece-12bb97331649.png

写时序04

颜色模式

4.1RGB565

每个像素用16比特位表示,占2个字节,RGB分量分别使用5位、6位、5位

6050d6b8-a4ba-11eb-aece-12bb97331649.png

4.1RGB888

每个像素用8比特位表示,占1个字节,注意:在内存中RGB各分量的排列顺序为:BGRBGR BGR 。..。..

60778786-a4ba-11eb-aece-12bb97331649.png


文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    中科院发布寒武纪深度神经网络处理器 速度完爆x86;第三届世界互联网大会于2016年11月16日在浙江乌镇召开,并举办了领先科技成果发布会。其中中国最引人注目的就是中国科学院计算技术研究所发布了寒武纪深度神经网络......
    人工智能在5G和6G网络中的应用; (AI)革命已经到来。 随着ChatGPT等应用的公开发布,人们得以利用深度神经网络和机器学习(ML)的力量和潜力获得亲身体验。ChatGPT是一......
    基于芯驰D9360国产开发板)的TinyMaxi轻量级的神经网络推理库方案测试。 算力测试 TinyMaix 是面向单片机的超轻量级的神经网络推理库,即 TinyML 推理库,可以让你在任意单片机上运行轻量级深度......
    也能进行识别和其他作业,因此促进了热潮。模型根据应用的不同,又分为影像识别的深度神经网络(DNN)、卷积神经网络(CNN)、语音识别的循环神经网络(RNN)和自然语言处理的Transformer。模型......
    诉VentureBeat,谷歌已经在尝试把越来越多的深度学习功能融入到谷歌翻译中。除此之外,谷歌的一位发言人在邮件中告诉VentureBeat,最新的神经机器翻译是他们努力研发深度学习功能的成果。 实际上,谷歌一直以来都在致力于将深度神经网络......
    人工智能在5G和6G网络中的应用; 作者:是德科技6G营销总监Sarah LaSelva 人工智能(AI)革命已经到来。 随着ChatGPT等应用的公开发布,人们得以利用深度神经网络......
    流AI工作负载上展现了出色的计算效率。研究显示,在运行传统深度神经网络时,该系统能够每秒完成多达2万万亿次(20 petaops)运算,8位运算能效比达到了15 TOPS/W,相当于甚至超过了基于GPU和......
    负载上展现了出色的计算效率。研究显示,在运行传统深度神经网络时,该系统能够每秒完成多达2万万亿次(20 petaops)运算,8位运算能效比达到了15 TOPS/W,相当于甚至超过了基于GPU和CPU的架构。Hala......
    Point的研究能够在大规模AI技术的效率和适应性上取得突破。” Hala Point在主流AI工作负载上展现了出色的计算效率。研究显示,在运行传统深度神经网络时,该系统能够每秒完成多达2万万......
    深度神经网络点云识别算法在嵌入式平台上实时运行一直是业界难点之一。 经纬恒润经过潜心研发,于2020年攻克了深度神经网络在嵌入式平台部署所面临的自定义算子与加速、量化、模型压缩等难题,率先实现了高性能激光点云神经网络......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>