纳芯微容隔技术,从容应对电源难题

发布时间:2023-07-20  

电器产品都会用到电源,常见的电源包括调压电源、开关电源、逆变电源、变频电源、不间断电源等。大部分电源都需要有隔离器件,以保证设备和人身安全。因采用的隔离技术不同,隔离效果也不一样。因此,选择隔离产品应该扬长避短,尽可能将系统性能做到最佳。

本文引用地址:

01 电源为什么需要隔离

这是一个老生常谈的问题,目的是避免电源的高压电对人体产生危害。新能源汽车就是常见的高压电源场景,电池电压是400V或新出现的800V,如此高的电压会对人体产生危害;充电桩亦是如此,它将交流电转换为高压直流电,也需要将高低压隔离开来,这就需要用到隔离器件。

又如,光伏或数据中心的服务器电源、工业变频伺服应用以及一些工业电源模块或储能装置,这些常见的高压电源场景除了要避免高压对人体的危害,还要满足相应的安规要求。

另外,对于一些不共地的系统,如半桥拓扑的上管驱动也需要隔离;此外,虽然一些系统本身并不需要隔离,但为了提升性能,需要将高压侧的高噪声来源与低压侧隔离开,以减少控制器端的干扰。

02 隔离的要求和分类

隔离有严格的安规认证,常见的是美国的UL认证、德国VDE认证以及电工协会的IEC认证等。安规认证包括两类,一类是系统级,如IEC60065、IEC60950等;另一类是器件级,如UL1577以及IEC60747标准。IEC标准从安全角度定义了三个等级能量源,都是以电压电流大小作为分级依据,实施相应的保护措施。值得一提的是,的所有隔离产品都通过了UL、CUL以及VDE、CQC安规认证。

电源系统中应用非常广泛的是隔离芯片,例如,在车载充电机OBC/DC-DC系统中,高压电池充电输入侧是220V到380V,输出侧为400V或800V;低压电池充电是12V到48V,其中包括PFC和LLC两级拓扑。整个系统拓扑比较复杂,往往会采用两颗MCU做主控,两个MCU之间的通信便需要进行隔离。此外,这些拓扑中的功率管,不管是Si MOSFET还是第三代半导体器件,都需要相应的驱动,也需要进行隔离。

另外,根据系统的控制精度要求,电压采样、电流采样以及系统的对外通信也需要隔离。

03 常见的几种隔离技术及要求

目前,行业采用的隔离技术有三种:传统光耦、磁耦和容耦技术。传统光耦技术应用最广泛、历史最长。它以光为介质将输入信号耦合到输出端,但是体积较大,传输速度较慢,随着使用时间的增长会出现光衰,且工作温度范围较窄。磁耦和容耦是目前比较主流的隔离技术。磁耦耐压高、传输速度快、温度范围宽,但工艺复杂,有EMI辐射;容耦耐压高,传输速度快,传输延迟仅为二三十纳秒,工作温度范围非常宽,工艺并不复杂,具有很高的可靠性。

的隔离芯片便是基于容耦技术,采用Adaptive OOK®自适应编码技术,EMI辐射低,误码率低,还能有效提高隔离器件抗共模噪声(CMTI)的能力。

隔离产品的重要指标包括:隔离耐压等级、CMTI能力、EMC性能以及传输延迟和工作温度、隔离寿命等。隔离产品的隔离电压等级高达10kV,CMTI至少100kV/μs;抗浪涌超过10kV,双边ESD超过15kV。

04 电源系统的趋势和应用难点

1. 电源系统的趋势

●  高集成化:电源系统正往更高集成度的趋势发展,因此也需要更高集成度的IC,例如将电源和数字隔离器集成在一起,以降低工程师设计隔离电源的复杂程度。

●  高压化、高频化:光伏系统已从800V转到1500V,第三代半导体(氮化镓或碳化硅)的应用也越来越广泛,系统开关频率越来越高,速度越来越快。隔离产品需要有更高的CMTI能力,能承受更高电压,EMI性能更好。

●  高可靠性:隔离芯片均需要通过严格的安规认证。

2. 电源系统的应用难点

电源系统的应用难点在于,第三代功率器件对驱动芯片提出了更高的要求,如CMTI大于100kV/μs水平。由于碳化硅驱动电压更高,要求驱动器输出电压范围摆幅更宽。此外,产品开关速率要更快,并降低开关损耗,驱动器具有输出更大的Source或Sink电流能力,芯片内部上升或下降时间更短,传输延时更小。

碳化硅驱动芯片的新功能是“米勒钳位”,随着SiC的开关,桥臂中点有很大dv/dt,下管Cgd电容会产生一个米勒电流,即使下管处于关断状态,也会通过下管关断电阻产生一个压降。考虑到碳化硅器件的导通阈值比较低(2V左右),如果压降较大会造成下管误导通,系统就会有短路风险。

“米勒钳位”功能可以应对碳化硅应用中的这个问题。在芯片中增加一个MOSFET可以直接将GND和碳化硅栅极相连,当下管关断后,会跳过下管驱动电阻,直接将栅极短路到GND,以此消除米勒电流造成的压差,从而避免米勒效应导致下管误导通的风险。

 纳芯微的隔离类产品

纳芯微的隔离产品品类非常齐全,包括数字隔离器、隔离驱动、隔离电压/电流采样、隔离CAN收发器。驱动方面,不管是MOS、IGBT还是碳化硅,都有相应的隔离产品。采样方面,既有模拟输出隔离运放,也有数字输出隔离ADC,满足不同应用场景对采样率和采样精度的要求。接口方面,隔离I2C接口、485或CAN接口产品都很丰富,能够为客户的电源设计提供一站式解决方案。

纳芯微的产品采用容耦技术,顺应了当前集成化、高压化、可靠性的电源应用趋势,满足第三代功率器件对驱动芯片提出的更高要求。其隔离产品品类非常齐全,包括数字隔离器、隔离驱动、隔离电压/电流采样、隔离CAN收发器,能够为工程师提供多样化的选择。

文章来源于:电子产品世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    七彩虹预计今年显卡销量增至420万块 坐稳全球前三;NVIDIA全新的Pascal架构让不少显卡厂商尝到甜头,强悍的性能加之A卡错位竞争无缘高端,10系N卡的销售一直紧俏。 据产业链消息,七彩......
    频率上限提高,七彩虹预告DDR4/DDR5新内存条; 据业内信息报道,知名硬件厂商预告了全新的战斧系列内存,可选 -4000 和 DDR5-6000 以上频率,相比......
    大功率快充数字电源芯片供应商总部落户苏州高新区;9月20日,苏州高新区与水芯电子科技签约,标志着水芯电子科技总部正式落户高新区。此外,签约活动前,苏州银行股份有限公司与水芯电......
    达集团,签订服务器电源、笔记本电脑适配器、消费电子手机快充头的碳化硅芯片全方位应用战略合作伙伴关系。 资料显示,钛芯电子成立于2020年9月,是一家以第三代化合物半导体碳化硅材料为核心,研制......
    七彩虹iGame遇上《守望先锋》美女Coser;对于如今的高端PC用户来说,升级最新配置的主要动力是什么?当然是玩最新游戏大作。 在这个游戏精品依然不断的年代里,暴雪也活力依旧,一部《守望......
    七彩虹CUDIMM DDR5内存达成10GHz; 10月16日消息,随着Intel酷睿Ultra 200S系列新平台的到来,CUDIMM DDR5得到正式支持,立刻开始爆发,多家......
    封装测试生产线7月设备到厂并调试完成,近日正式投产,一条线可月产1000万块电源IC,投入市场就是1000-2000万元的销售额,目前在手订单已超过2亿元。 报道称,目前,已有七彩虹、技嘉、超微......
    笔者就教大家一分钟学会CPU超频! 通常所说的超频简单来说就是人为提高CPU的外频或倍频,使之运行频率(主频=外频*倍频)得到大幅提升,即CPU超频。注意,超频会影响系统稳定性,缩短硬件使用寿命。我们以七彩......
    为核心的功率转换解决方案,适用于风能逆变、光伏逆变、工业电源、新能源汽车、电机驱动、充电桩等领域。 官网资料显示,上海瞻芯电子以虚拟IDM模式与国内一线半导体行业的合作伙伴完成晶圆制造、芯片封装、模块封装、性能......
    专注碳化硅半导体领域,瞻芯电子完成数亿元A+及A++轮融资;近日,碳化硅(SiC)高科技芯片公司瞻芯电子宣布完成总金额达数亿元的A+和A++轮融资。本次融资由国投招商、小米......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>