功率MOSFET零电压软开关ZVS的基础认识

发布时间:2023-02-08  

高频高效是开关电源及电力电子系统发展的趋势,高频工作导致功率元件开关损耗增加,因此要使用软开关技术,保证在高频工作状态下,减小功率元件开关损耗,提高系统效率。

本文引用地址:

高频高效是开关电源及电力电子系统发展的趋势,高频工作导致功率元件开关损耗增加,因此要使用软开关技术,保证在高频工作状态下,减小功率元件开关损耗,提高系统效率。

功率开关损耗有2个产生因素:

1)开关过程中,穿越线性区(放大区)时,电流和电压产生交叠,形成开关损耗。其中,米勒电容导致的米勒平台时间,在开关损耗中占主导作用。

功率MOSFET零电压软开关ZVS的基础认识

图1 功率开通过程

2)功率输出电容COSS储存能量在开通过程中放电,产生开关损耗,高压应用中,这部分损耗在开关损耗中占主导作用。

功率MOSFET零电压开关是其最常用的软开关方式,包括零电压的开通、零电压的关断,下面介绍这二个过程的实现方式。

1、功率MOSFET零电压的开通

功率MOSFET要想实现零电压的开通,也就是其在开通前,D、S的电压VDS必须为0,然后,栅极加上VGS驱动信号,这样就可以实现其零电压的开通。在实际的应用中,通常方法就是利用其内部寄生的反并联寄生二极管先导通续流,将VDS电压箝位到0,然后,栅极加VGS驱动信号,从而实现其零电压的开通。

功率MOSFET零电压软开关ZVS的基础认识

图2 功率MOSFET体二极管导通

功率MOSFET开通前,COSS电压VDS为一定值,因此COSS电容储存了能量。为了将VDS放电到0,而且不损耗能量,就必须用一些外部元件,将COSS电容储存的这部分能量,抽取并转移到外部元件中。能够储存能量的元件有电容和电感,因此,最直接的方法就是:通过外加电感L和COSS串联或并联,形成谐振电路(环节),LC谐振,COSS放电、VDS谐振下降到0,其储存能量转换到电感中。此时,电感电流不能突变,要继续维持其电流的方向和大小不变,这样,功率MOSFET反并联寄生二极管导通续流。

功率MOSFET零电压软开关ZVS的基础认识

图3 LC谐振

功率MOSFET反并联寄生二极管导通后,VDS电压约为0,在其后任何时刻开通功率MOSFET,都是零电压开通。因此,功率MOSFET零电压开通逻辑顺序是:

LC电路谐振-->COSS放电、VDS电压下降-->VDS电压下降到0、功率MOSFET体二极管导通箝位-->施加VGS驱动信号,MOSFET导通,电流从功率MOSFET体二极管转移到其沟道-->电流从负向(S到D)过0后转为正向(D到S)。

功率MOSFET零电压软开关ZVS的基础认识

图4 零电压开通波形

2、功率MOSFET的零电压关断

从字面上来理解,功率MOSFET零电压关断,应该就是VDS电压为0时,去除栅极驱动信号,从而将其关断。事实上,功率MOSFET处于导通状态,VDS电压就几乎为0,因此,可以认定:功率MOSFET在关断瞬间,本身就是一个自然的零电压关断的过程。

然而,功率MOSFET关断过程中,VDS电压从0开始上升,ID电流从最大值开始下降,在这个过程中,形成VDS和ID电流的交叠区,产生关断损耗。为了减小VDS和ID交叠区的损耗,最直接办法就是增加VDS上升的时间,也就是在D、S并联外加电容,降低VDS上升的斜率,VDS和ID交叠区的面积减小,从而降低关断损耗,如图5所示。VDS2为外部D、S并联电容的波形,VDS2上升斜率小,和ID电流的交叠区的面积也变小。

功率MOSFET零电压软开关ZVS的基础认识

图5 不同COSS电容的VDS波形

早期的全桥移相电路、LLC电路以及非对称半桥电路中,通常在上、下桥臂的功率MOSFET的D、S都会外部并联电容,就是这个原因。

功率MOSFET的D、S外部并联电容,可以降低其关断过程中VDS和ID交叠产生的关断损耗,但是,额外的外部电容,需要的更大变压器或电感电流,来抽取这些电容储存能量。这样,在变压器或电感绕组和谐振回路中,产生更大直流环流,回路导通电阻就会产生更大的直流导通损耗;此外,外部并联电容还会影响死区时间的大小,所以,要在二者之间做折衷和优化处理。

从上面分析可以得知:功率MOSFET的零电压软开关工作,重点在于要如何实现其零电压的开通,而不是零电压的关断。


文章来源于:电子产品世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    通常是功率电子器件,例如由 PWM 信号控制的 MOSFET或BJT 晶体管。该 PWM 信号通过非常快速地切换晶体管来工作,通常每秒数千次。 三、DC-DC 升压电路工作原理 假设当前的电压是 5V,需要......
    通常是功率电子器件,例如由 PWM 信号控制的 MOSFET或BJT 晶体管。该 PWM 信号通过非常快速地切换晶体管来工作,通常每秒数千次。 三、DC-DC 升压电路工作原理 假设......
    极管的其他特性和应用了解不多,认识上也认为掌握了二极管的单向导电特性,就能分析二极管参与的各种电路,实际上这样的想法是错误的,而且在某种程度上是害了自己,因为这种定向思维影响了对各种二极管电路工作原理的分析,许多二极管电路无法用单向导电特性来解释其工作原理......
    中的应用第一反应是整流,对二极管的其他特性和应用了解不多,认识上也认为掌握了二极管的单向导电特性,就能分析二极管参与的各种电路,实际上这样的想法是错误的,而且在某种程度上是害了自己,因为这种定向思维影响了对各种二极管电路工作原理......
    高响度警音发生器/电子仿声驱鼠器/语音录放电路设计;高响度警音发生器 本警音发生器电路简单,工作性能稳定可靠,工作电压 6V-12V,适合在汽车、摩托车上作警笛使用。 一、电路工作原理 电路原理......
    用万用表来测量直流电流和直流电压的工作原理;万用表是我们用电检测仪器中最常用的,万用表使用有很多小技巧,今天学习网小编就来与大家分析一下用万用表来测量直流电流和直流电压的工作原理。 1、首先来看看直流电流测量电路工作原理......
    ZVS导通波形 Q1和Q2的ZVS导通特性如图14和15所示,当MOS的VDS谐振达到0时,栅极导通,ZVS实现,ZVS的行为与 LLC 拓扑结构类似。 演示功能验证 为了验证该工作原理......
    以有效地提高整个系统的效率。 图1 具有高的单级AC-DC拓扑结构 3.工作原理与状态分析 在一个完整的开关周期中,我们可以将这个单极AC-DC转换器分为8个工作状态(包括死区时间)。为加深理解,我们将逐个分析这些工作状态。 图......
    【DigiKey探索之旅】倍压整流电路工作原理;:利用滤波电容的存储作用,由多个电容和二极管可以获得几倍于变压器副边电压的输出电压,称为。电路如下图所示。本文引用地址:★当u2正半周时节,电压......
    调试,非常适于自制。 一、电路工作原理 电路原理如图 31 所示。 图中IC1和IC2是两片集成功放LM386,接成OCL电路。C1起到电源滤波及退耦作用,C3为输入耦合电容,R1和C2起到防止电路......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>