5G要大规模普及,先解决这几个问题

发布时间:2017-03-06  

china0513-624x468

来源:内容来自新电子,谢谢。

小型基站的概念并不新,且业界一直对其发展潜力相当看好,但到目前为止,小型基站的表现仍不如预期。不过由于5G讯号特性,势必得靠小型基站来组成异质网络,因此在迈向IMT-2020的目标中,小型基站将是值得持续聚焦的一大重点。

由3GPP发布的5G技术发展使用情境,可区分为提供更高频宽的eMBB,专为大规模物联网应用而发展的mMTC,以及能满足各种即时通讯需求,且可靠度更高的URLLC。由于三种应用场景锁定的情境皆不相同,未来电信商的营运模式与发展的产业生态链,势必也将有所不同。

构筑5G蓝图eMBB/mMTC/URLLC各司其职

资策会智通所主任马进国(图1)表示,目前5G New Radio大部分订的标准,着重在eMBB,URLLC今年将会订得更为完整,而mMTC则会逐步靠NB-IoT、LTE对接过来,因此标准会订得比较慢一些。

china0513-624x468

图1 资策会智通所主任马进国表示,小型基站将会是发展eMBB的重要设备。

马进国进一步表示,eMBB除了在6GHz以下的频谱发展相关技术,也会发展在6GHz以上的频谱。而小型基站(Small Cell)将会是发展eMBB的重要设备,由于目前6GHz以下的频谱,大多是以大型基站发展的传统网络模式为主,而较以6GHz以上频谱的毫米波技术,便须要小型基站来把速度冲得更快。而eMBB主要的应用会是在大流量的行动宽频业务。

除了eMBB,URLLC则将会着重发展在6GHz以下的频段上,主要应用会是无人车,因其反应必须很快,才能有效避免意外事故的发生。此外,另一项重要应用场域则是在智慧工厂,由于大量的机器都内建感测器,从感测器、后端网络、下指令,再传送回机器本身的这些过程,若以现有的网络传输,将出现很明显的延迟,可能引发工安事故。有鉴于此,URLLC将网络延迟的目标压低到1毫秒以下。

而mMTC也将会发展在6GHz以下的频段,其将会应用在大规模物联网上,目前较可见的发展是NB-IoT。

以往普遍的Wi-Fi、Zigbee、蓝牙等,较属于家庭用的小范围技术,回传线路(Backhaul)主要都是靠LTE,最近随着大范围覆盖的NB-IoT、LoRa等技术标准的出炉,可望让物联网的发展更为广泛。

高频5G讯号跑不远小基站角色更吃重

在4G网络环境中,小型基站主要扮演的是补强网络涵盖死角的角色,主要的网络涵盖还是由大型基站负责。但由于5G通讯所使用的频段更高,穿透力与涵盖范围将比4G更差,因此小型基站势必将在5G网络建置中扮演更重要的角色。

台湾资通产业标准协会(TAICS)秘书长暨工研院资通所副所长周胜邻指出,无论是大型基站还是小型基站,一个区域里基站越多,该行动网络的系统容量也就越大。一个大基站涵盖的半径,可以从500公尺∼2公里,但容量却是固定的,因此范围布得越广,单一用户可以分享到的容量就越小,容易造成拥塞。如果能透过小型基站组网,便可把不同用户分散到这些基站去,进而让容量增加。

未来5G小基站的观念,会是在大型基站底下,再布建好几个小型基站(图2)。周胜邻举例,以台北市东区的面积来说,一座大型基站的讯号涵盖范围已经足够,但考虑到当地人潮拥挤、行动网络的流量也高,因此网络容量必须更大,才能满足用户需求。在SOGO等人潮聚集的地区再布建几个小基站,便可有效提高网络容量。

china0513-624x468

图2超高密度异质网络 资料来源:TAICS,台湾5G白皮书

周胜邻进一步分析,但如此一来,大小基站必须能彼此协调,否则反而会互相干扰。这对基站规画(Cell Planning)来说,是新的挑战。目前大小基站共存,仍存在讯号干扰的问题。除此之外,小基站彼此如果布得太密,也会有干扰的问题。因此,增加小型基站所能扩增的网络容量,还是有其极限。以目前的技术来看,利用小型基站,最多可把网络容量增加2∼5倍。

以中国移动为例,目前该公司是采用大小基站异频运作的方式来降低干扰问题。因为频率不同的关系,该方式能成功避免大小基站相互干扰。不过,此作法可能难以应用在台湾,因台湾电信商的数量较多,每家厂商的频谱资源都很有限,单一电信业者很难有如此多的频率可以使用。

彻底解决基站干扰UDN还得加把劲

工研院新世代通讯技术与应用推广部经理刘家隆表示,5G UDN的研发目标,便是要在UDN环境下,解决基站间干扰增加的问题,使小型基站布建密度增加十倍时,频宽流量可同时接近时被增长。

UDN提出把破坏性干扰,转成建设性合成波的MIMO技术。从单一小型基站导入整个UDN网络,透过MIMO与跨基站之间的紧密协调,来消除干扰,此过程称为Network MIMO。Network MIMO这种跨基站合作技术,现已被视为是5G的重要技术之一。

Nokia解决方案营销部台港澳业务销售总监郑志中进一步指出,由于目前部分电信营运商是用比较传统的方式在运行小型基站,没有仔细规画,而无法掌握干扰状况。当大量部署小型基站时,所有的基站都必须有自我组织网络(Self Organization Network, SON)的能力,才能有效调整、控制讯号的大小,以大幅避免干扰的状况发生。

郑志中分析,如今干扰状况的产生,有可能是电信营运商没有考量到整体状况,就直接进行部署,以致于无法顺利扩充讯号涵盖量。同频虽然在先天上有不少缺陷,但现已有许多技术可以在后天进行改善。

5G带来多重考验RF元件整合势在必行

然而,无论大小基站,为因应5G高频、高容量特性,RF元件在整合度、系统功耗上的要求,相较4G LTE来得更高,因此元件供应商如何在这些更严格的要求下,保持成本竞争力,将进一步影响到5G商用化的进程。对元件供应商而言,如何进一步提高RF元件的整合度,使其在效能不打折的情况下降低功耗,将是一大挑战。

ADI通讯基础设施业务部中国区战略市场经理解勇(图3)表示,美国营运商Verizon和AT&T,计画在2017年把5G毫米波技术,应用在固定无线宽频接入网络上,从而提供家庭使用者高速的网络连接方案。ADI作为主要的射频微波芯片供应商,多年来一致积极致力于微波和5G相关技术产品的研发和演进,提供整体讯号链解决方案。

china0513-624x468

图3 ADI通讯基础设施业务部中国区战略市场经理解勇表示,小型基站在中国大陆的发展十分火热,应用场景日广

由于5G基站采用大规模天线阵列(Massive MIMO)技术,每个天线的发射功率并不大。相对于传统大型基站来说,5G基站对系统功耗、尺寸和成本更加敏感,所以对于RF收发器元件,要求其整合度更高,功耗更低以及成本更具竞争力。

解勇进一步表示,小型基站是解决网络容量和室内覆盖难题的重要方式之一,和大型基站一起组成分层网络,已是业界的共识和趋势。目前小型基站在很多国家都有规模部署,在中国大陆的发展也十分火热,应用场景日广,主要产品形态以分散式射频头端(Radio Head)或光纤延远小型基站,以及一体化的小型基站为主。

解勇指出,目前产业面临的主要挑战是,在如何取得更高整合度和更低功耗的目标下,保持成本竞争力。因为新的制程及及新技术的研发持续投入是巨大的,5G的成熟和大规模商用还须要很长一段时间。在元件指标上,由于5G标准还在制定之中,现在还不是很明确,但是由于5G的频段包含微波和毫米波频段,在元件的指标设计难度上会更大。

此外,伴随各国陆续释出6GHz以下频谱,给行动宽频使用,同时在2016年7月份,美国FCC也开放了近11GHz可灵活运用于行动和固定无线宽频服务的高频段频谱,其中包括28GHz、37GHz 、39GHz和一个新的64∼71GHz未授权频段。

对此,解勇表示,ADI在6GHz以下,与6GHz以上频谱的RF元件之发展策略是齐头并进,6GHz以下频段重点开发CMOS制程的基于软体定义无线电(SDR)架构的射频完全整合型收发器(Transceiver )方案,以及射频取样架构资料转换器;6GHz以上频段目前重点开发矽锗制程的高性能微波整合元件。

NCC改采免审验制度小基站部署添动能

此外,近期美国与台湾政府,也各自发布对小型基站发展有利的政策。合勤行动宽频事业中心资深经理廖清波(图4)表示,美国FCC释出的CBRS频段,将会是5G小型基站发展的重要频段。目前行动通讯所使用的频谱多半是竞标而来,授权费用相当昂贵,因此整个电信产业基本上是以大型营运商为主体,但CBRS频段采用注册制,任何注册的业者皆可使用,因此将给中小型电信业者较大的发挥空间。而对这些规模较小的电信业者来说,相较于大型基站,小型基站自然是更经济实惠的选择。

china0513-624x468

图4 合勤行动宽频事业中心资深经理廖清波表示,CBRS频段将是5G小型基站发展的重要频段。

除了美国之外,在2016年底,台湾NCC亦放宽了小型基站的设置审验,改采免审验制度。未来在台湾建设小型基站将不必再逐一申请建置许可。廖清波认为,过去NCC把小型基站当成大型基站来管理,申请的过程十分繁琐,管制放宽后,将对台湾的小型基站发展有相当大助益。

周胜邻则表示,此项放宽对电信营运商来讲是好事,因为这意味着,小型基站的布建将会更加容易。

在4G时代,小型基站被视为用户端设备(CPE),在整体布建的基站规画时,仅用来弥补大型基站的不足,且衍生的干扰问题更让业者对其印象大打折扣。在未来的5G时代,产业若能克服这些问题,开创出异质网络的全新商业模式,将是小型基站蓬勃发展的一大利基。

china0513-624x468

【关于转载】:转载仅限全文转载并完整保留文章标题及内容,不得删改、添加内容绕开原创保护,且文章开头必须注明:转自“半导体行业观察icbank”微信公众号。谢谢合作!

china0513-624x468【关于投稿】:欢迎半导体精英投稿,一经录用将署名刊登,红包重谢!来稿邮件请在标题标明“投稿”,并在稿件中注明姓名、电话、单位和职务。欢迎添加我的个人微信号MooreRen001或发邮件到 jyzhang@moore.ren

china0513-624x468

责任编辑:mooreelite
文章来源于:半导体行业观察    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    有不少韩国工程师在中国硅晶圆生产商处工作,引发技术外流的担忧,韩国业内人士指出,“一些中国晶圆制造商已经聘请了很多韩国工程师并开发了技术。如果说过去中国晶圆主要集中在6英寸,那么随着国产晶圆占比的提高,8英寸晶圆也迟早会普及......
    版的 iPhone 将不会普及至全系列,而是会改变近来每年两部旗舰机的策略,推出一款 5.8 寸 OLED 版 iPhone,在 2017 年发布 4.7 寸、5.5 寸、5.8 寸三款新机,并只......
    为机器人“修路”(建设智能化基础设施),必须依托现有的5G网络建设条件,促进机器人应用及AIoT全社会普及,同时有利于全社会建设的5G网络功效得到最大的发挥,促使机器人成为5G时代的支撑性应用,共享5G......
    识别技术的精准性已经能媲美人类。微软 CEO 萨提亚·纳德拉认为,这一新突破对计算机行业的意义不亚于图形用户界面,不久后,这种能力将会普及到整个计算机行业中。 国内锤子 M1 发布会现场,科大......
    识别技术的精准性已经能媲美人类。微软 CEO 萨提亚·纳德拉认为,这一新突破对计算机行业的意义不亚于图形用户界面,不久后,这种能力将会普及到整个计算机行业中。 国内锤子 M1 发布会现场,科大......
    是拥有核心竞争力的胜出者。 一、2020 年,新技术领域测量的重要性将会更加凸显。 2020年,5G相关的先进应用将呈现爆炸式增长。这些新的应用需要使用更高的频率,尺寸也更加小巧。为了支持这一增长,测量......
    规模已是国内第一梯队阵营。 并且,比亚迪“天神之眼”高阶智驾系统,几乎是以一天一个小版本,一周一个大版本的速度在迭代。 此外,对于目前行业中引以为傲的“冰箱彩电大沙发”,张卓表示,比亚迪马上也会普及这类设计,例如......
    迪“天神之眼”高阶智驾系统,几乎是以一天一个小版本,一周一个大版本的速度在迭代。此外,对于目前行业中引以为傲的“冰箱彩电大沙发”,张卓表示,比亚迪马上也会普及这类设计,例如......
    /s)。室内定位需要5G这位“高富帅”?答案是肯定的! 5G通过获取手机和基站之间的信号传输时间以及手机相对基站的方位进行定位,即5G可支持TOF定位和AOA定位,以此实现单基站的三维立体定位。 从精......
    文末列出了最新的一些RF/测试测量新产品。 【12月16日,Aspencore在西安将举办“”,精彩的演讲议题包括“国产仪器设备在射频微测试中的应用(鼎阳)”、“GaN 在5G基站上应用现状及前景(QORVO......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>