硅电容差压传感器叠层静电封接工艺研究

发布时间:2023-01-30  


本文引用地址:

0 引言

静电是一种能将电介质(玻璃、陶瓷等绝缘材料)与半导体或导体实现硬性、清洁、坚固连接在一起的工艺。静电的根本出发点是在玻璃与半导体或金属表面极化相反的静电荷层,也叫空间电荷层,然后自此界面两边的异性电荷一同形成的静电引力,而达到封接的目的[1]

传感器是采用电容原理,在硅基材料上通过MEMS工艺制作的差容新式压力传感器。具备可靠性高、受温度影响小、耗电少、综合的指标更先进、适合于批量生产、成本低、配套性好等特点。近几年来,传感器作为测量的核心检测元件,越来越广泛的应用于化工、石油、冶金、电力等流程工业中,同时在轻工、环保、食品、带压容器测量、锅炉控制等民用领域也有广泛的应用,并被认为是有着较大前景和广阔市场的新一代传感器。实际应用中用于测量液体、气体的差压、流量等参数,作为过程控制领域用差压变送器的核心零部件,越来越显现了它在压力测量领域的生命力。

文中结合实验成果,从封装的角度给出了敏感元件的双电容微差压设计等方面的详细论述,并针对微差压敏感元件的结构特性,给出了小间距、微结构器件静电封接中关键技术研究等方面的论述,在核心结构型MEMS芯片的封装方面,具有很好的借鉴参考及推广应用价值。

1   静电封接原理

静电封接是近几年半导体行业常用的封装技术,不用任何外部粘接剂可以把半导体材料与玻璃或玻璃与合金材料直接封装在一起。通过加温和外加电场使封接界面产生化学反应,形成稳固化学键,将两者键合在一起。玻璃在常温下不导电,然而加热到一定温度,并施加一定高压时,玻璃中的钠离子,便会在强电场的作用下向负极移动;同样,在外加电场作用下,n 型或p 型半导体硅材料,内部电子和空穴也会发生定向移动,电子向正极移动,空穴向负极移动。进行静电封接时,通过加温加压,玻璃与半导体硅材料均导电,外加直流电压大部分降落在两种封接材料的间隙上,在接触区域形成很强的电场,产生极化区,有很大的静电吸引力,将平整光洁的两种材料封接在一起。

静电封接是一种理想的封接方法,具有良好的刚度、较强的气密性和成熟的技术,但与封接匹配的两种材料的热膨胀系数必须相似,差异不得超过(7-8)×10-7。大多数压力传感器由硅制成,在实际应用中,通常使用膨胀系数与硅相似的7740 玻璃和4J29 合金进行封装。

在压力传感器的制造过程中,芯片的封装和键合是非常重要的。芯片键合和封装的质量直接影响传感器的性能。封装应力引起的蠕变导致传感器输出漂移,影响长期稳定性,是目前制约压力传感器向高精度发展的主要因素之一。

2   硅电容差压传感器的结构设计

与硅压阻式传感器相比,硅电容传感器具有灵敏度高、结构简单,温漂较低、动态响应特性好、抗过载能力强等优点,广泛应用在流程工业、测量、控制等领域,现已成为硅微压力测量核心部件,具有非常广阔的发展前景。

硅电容差压敏感器件是由一个弹性硅活动极板和两个固定极板组成的两个差压电容器,可以近似成两个平板电容,其工作原理见式(1):

C =ε S /δ  (1)

其中:C 为电容;ε 是两极板间介质的介电常数;S 是极板相对有效面积;δ 是极板间隙。

根据上述电容原理,电容差压传感器设计可根据介质变化(Δε)、极板有效面积变化(ΔS)和极板间距变化(Δδ)。这3种方式、方法的任何变化都会引起电容值ΔC 变化,从而实现电容转换[2]

基于极距变化的工作原理,设计了硅电容差压传感器。其主要结构为玻璃- 硅- 玻璃对称双电极结构,中心硅敏感芯片用作电容的活动电极板,两端电容的固定电极板由沉积金属化膜的玻璃制成。

中心电极采用岛膜结构,在加压移动时,基本保证中间岛平行移动。在电容式差压传感器结构设计时,为了提高灵敏度,尽量缩小间隙以增加传感器的零点电容;同时,为了降低输出阻抗,满足传感器及测量电路的绝缘要求,需保证极板不粘连。根据理论及实践经验,电极间隙设计值只有几μm,零点电容几十pF。

两端的玻璃板起固定和电极引出的作用。玻璃板中央有一个压力孔。压力通过压力孔加载到硅中心板上,引起两侧电容的变化。差压测量是通过检测电容的变化来实现的。为了便于固定在压力座上,极板的另一侧通过金属导管实现芯片的差压加载。整个硅电容差压芯体的结构如图1 所示。为了确保准确控制板间隙,实现无蠕变硬封连接,静电封接工艺是最佳选择。

image.png

图1 硅电容差压芯体结构

3   静电封接过程控制

3.1 防粘接双面差压静电封接工艺

为了获得更大的信号强度,并确保传感器的体积满足小型化的要求,在设计中会尽可能减小极板之间的间隙,通常只有几μm。硅活动板和玻璃固定板通过普通静电封接工艺封接后,板粘附严重,导致器件故障。可以看出,传统的静电封接工艺已不能满足小间隙封接的特殊要求。

如果硅电容传感器的电容近似于极板电容,则极板之间的静电引力可由式(2)表示:

F=1/2εε0SV2/d2   (2)

式中:F 为静电引力;ε 为相对介电常数;ε0 是真空介电常数;S 为极板有效面积;V 为极板间的电压;D 为极板的间隙。

有两种方法可以避免电极粘附:

① 减少极板之间的静电力F;

② 保证可动极板受力均匀。

文献[3]采用第一种方法来避免电极板之间的粘附。在封接过程中,活动电极板和固定电极板采用相同的电位,取得了良好的效果。它不仅减少了极板之间的静电力,而且避免了封接过程中的电击穿,减少了装置的封接失效。但实际操作繁琐,无法满足大规模生产的需要。因此,针对上述问题,本文研究了一种高效便捷的传感器封接方法。采用第2 种方法能更方便、快速、有效地解决了差压结构硅电容传感器的极板粘附问题,简化了生产步骤,更适合工业化发展。

双面差压静电封接工艺的具体实施如图2所示。将固定玻璃电极1、硅片活动电极和固定玻璃电极2依次放置在加热板上,通过夹具对准位置,然后放上电极压块使封接面贴紧,封接示意图如图2 所示。

1675046908644042.png

图2 封接示意图

预热2分钟,确保封接的3 层差压结构达到相同的封接温度,然后上下玻璃电极通过导电压块和加热板连接到直流电源的负极;硅中间电极通过引线键合连接到直流电源的正极。开启直流电源,静电封接开始,具体的封接工艺参数根据封接材料的不同而进行适当的调整。一般情况,封接温度300 ~ 450 ℃,封接电压300 ~ 800 V,根据电流表监测整个封接过程,当封接电流降至接近0 时,封接完成。

在硅片和玻璃之间的界面上形成的静电场力会在界面上产生新的物质,即二氧化硅,足以将硅片和玻璃牢固地封接在一起,其物理和化学反应可以表示为(3):

image.png   (3)

关闭直流电源,取下电极,从加热板上取下封接后的差压器件,并使其在室温下自然冷却。封接温度越高,玻璃板的厚度越大,封接后玻璃中的残余拉应力越大。残余应力最终会增加硅电容器的压应力,并影响电容对称性。由于硅片和玻璃电极的热容量均较小,硅片和玻璃电极键合后缓慢冷却可以起到退火的作用,减少残余应力,保证键合质量和传感器性能。

3.2 合金导压管的封接

封接好的硅电容差压器件是玻璃- 硅- 玻璃三明治结构,由于器件和底座的应力匹配程度、外形结构等条件限制,器件与底座不适合直接封接,如直接将这两种材料封接在一起就会有较大的热应力甚至会导致两者熔封处开裂。为此我们采用了合金导压管过度的方式做到气密连接和固定支撑。

导压管选用和玻璃膨胀系数接近的4J29 合金,采用静电封接的方式将玻璃垫片和合金导压管封接在一起。玻璃接负极,合金导压管接正极,导压管封接结构如图3。

1675047076560228.png

图3 导压管封接结构

3.3 下极板电极引出

通过导电胶粘接的方式将硅电容三明治器件和导压管气密连接到一起,通过导电胶将硅电容下极板电容引出,整体硅电容器件结构如图4。实验证明采用此工艺生产的硅电容传感器输出稳定、成品率高,适合批量生产。

1675047128468711.png

图4 整体硅电容器件结构

4   结束语

目前,采用上述差压静电封接工艺制造电容差压器件,实际测试效果良好,从根本上解决了小间隙电容器件封接后电极板的粘附问题。

双面差压静电封接具有良好的对称性,可以确保电容器极板间隙的精确控制。器件封接过程中的应力最小化是非常关键的技术指标。封接要选择热膨胀系数相近的材料,最大化减少装配热应力[4]。通过控制过程中的温度、电压和时间,可以获得良好的封接效果。此项双面封接工艺操作简单、实用性强、适合批量生产,具有良好的应用推广价值。

参考文献:

[1] 张子鹤,刘振华,陈勇.压力传感器的硅玻静电键合[J].世界科技研究与发展,2011,33(2):268-270.

[2] 张娜,李颖,张治国.双面静电封接工艺在硅电容传感器中的应用[J].仪表技术与传感器,2012(1):13-15.

[3] 李颖,张治国,张娜.硅电容微差压敏感器件封装工艺研究[J].仪表技术与传感器,2013(12):138-140.

[4] 赵毅强,张生才,姚素英等.半导体高温压力传感器的静电键合技术[J].哈尔滨工业大学学报,2002,34(6):773-775.

(本文来源于《电子产品世界》杂志2023年1月期)

文章来源于:电子产品世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    转换[2]。 基于极距变化的工作原理,设计了硅电容差压传感器。其主要结构为玻璃- 硅- 玻璃对称双电极结构,中心硅敏感芯片用作电容的活动电极板,两端电容......
    的应用 电位器式传感器 多孔性氧化铝湿敏电容原理 基本变间隙型电容传感器和 差动变间隙型电容传感器的工作原理 变面积型电容传感器工作原理 利用接近开关进行物体位检测的原理......
    泛地应用于消费电子、汽车电子、工业控制、生物医疗、航天航空和国防领域。根据压力类型,压力传感器可分为表压、差压和绝压三大类;根据核心材料,压力传感器可分为硅、陶瓷、金属、石墨烯、高分子聚合物等类型;根据工作原理,压力传感器......
    ,变送器的低压侧与低压侧导压管相连,测得压力为P-kPa,则变送器测得实际差压为(P+-P-)kPa。   EJA118隔膜密封式差压变送器是用于防止过程介质直接进入差压变送器的压力传感器组件中,它们......
    15.陶瓷湿度传感器 16.多孔性氧化铝湿敏电容原理 17.基本变间隙型电容传感器和 18.变面积型电容传感器工作原理 19.利用接近开关进行物体位检测的原理 20.光柱显示编码式液位计原理......
    图所标识的给标准品和测试品同时加压后,关闭气动阀1和2,如果测试品有泄漏,测试品的压力会下降。通过差压传感器测出测试品于标准品之间的压力差,从而判断测试品是否有泄漏。 ......
    Sensors是一家专业设计和制造传感器解决方案的公司。他们提供各种类型的气体液体压力传感器,包括差压传感器、绝对压力传感器和电容式传感器。 ......
    。 (×) 33、电容式差压变送器是根据差压变化时传感器的电容量cx发生变化的原理工作的。 (√) 34、对差压变送器开启和停用时,应避免仪表承受单向静压。 (√) 35、eja变送器既可以在线调整零点,也可......
    高科为全球范围内的忠实客户矢志不渝地提供国际技术领先的高性价比MEMS产品。 产品预售: WXP380“电容式”数字气压传感器工程设计样品将于2022年3-4月份开始提供,并计划于2022年第二季度量产上市,现已......
    到容器内的液体。 用户以前使用投入式差压液位计,对传感器耐腐蚀性要求很高,成本也较高。伊玛的应用工程师推荐使用M30电容接近开关CB0006,并做了一些应用工艺的升级,替客......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>