在进行STM32F中AD采样的学习中,我们知道AD采样的方法有多种,按照逻辑程序处理有三种方式,一种是查询模式,一种是中断处理模式,一种是DMA模式。三种方法按照处理复杂方法DMA模式处理模式效率最高,其次是中断处理模式,最差是查询模式,相信很多学者在学习AD采样程序时,很多例程采用DMA模式,在这里我针对三种程序进行分别分析。
1、AD采样查询模式
在AD采样查询模式中,我们需要注意的是IO口的初始化配置,这里我采用PA2作为模拟采集的引脚(AIN2)和串口3作为打印输出。
具体如下:建立一个USART3.C和USART3.H文件,其程序为:
#include "usart3.h"
#include "stdarg.h"
u8 SendBuff[SENDBUFF_SIZE];
void USART3_Config(void)
{
//定义结构体
GPIO_InitTypeDef GPIO_InitStructure;
USART_InitTypeDef USART_InitStructure;
//开启外部时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB | RCC_APB2Periph_AFIO, ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3, ENABLE );
// USART3 GPIO config
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOB, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOAtiNG;
GPIO_Init(GPIOB, &GPIO_InitStructure);
//USART3 mode config
USART_InitStructure.USART_BaudRate = 115200;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
USART_Init(USART3, &USART_InitStructure);
USART_Cmd(USART3, ENABLE);
}
其次建立一个ADC.C和一个ADC.H文件,其中ADC.C中程序为:
void ADC1_Init(void)
{
ADC1_GPIO_Config();
ADC1_Mode_Config();
}
static void ADC1_GPIO_Config(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
//开启外部时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1 | RCC_APB2Periph_GPIOA,ENABLE);
//配置PA2引脚
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
//配置为模拟输入
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
//调用库函数
GPIO_Init(GPIOA, &GPIO_InitStructure);
}
static void ADC1_Mode_Config(void)
{
//ADC1_ configuration
ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;
//独立ADC模式
ADC_InitStructure.ADC_ScanConvMode = DISABLE;
//禁止扫描模式
ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
//开启连续转换模式
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; //不使用外部触发转换
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; //采集数据右对齐
ADC_InitStructure.ADC_NbrOfChannel = 1; //要转换的通道数目1
ADC_Init(ADC1,&ADC_InitStructure);
//配置ADC时钟,为PCLK2的8分频,即9Mhz
RCC_ADCCLKConfig(RCC_PCLK2_Div8);
//配置ADC1的通道2位55.5个采集周期
ADC_RegularChannelConfig(ADC1,ADC_Channel_2, 1, ADC_SampleTime_55Cycles5);
ADC_Cmd(ADC1,ENABLE);
//复位校准寄存器
ADC_ResetCalibration(ADC1);
//等待校准寄存器复位完成
while(ADC_GetResetCalibrationStatus(ADC1));
//ADC校准
ADC_StartCalibration(ADC1);
while(ADC_GetCalibrationStatus(ADC1));
//由于没有使用外部触发,所以使用软件触发ADC转换
ADC_SoftwareStartConvCmd(ADC1,ENABLE);
}
然后在主函数main中其程序代码如下:
int main(void)
{
USART3_Config();
ADC1_Init();
printf("输入ADC值");
while(1)
{
ADC_ConvertedValue = ADC_GetConversionValue(ADC1);
ADC_ConvertedValueLocal =(float)ADC_ConvertedValue/4096*3.3; //读取ADC转换的值
printf("rn the current AD value = 0x%04X rn",ADC_ConvertedValue);
printf("rn the current AD value = %f V rn",ADC_ConvertedValueLocal);
Delay(0xFFFFEE);
}
}
这样采用查询的方法即可以采集ADC的电压值,一个值为16进制转换的值,一个是转换计算的值。说明一下:ADC_ConvertedValue = ADC_GetConversionValue(ADC1);
一定要放在while中,只有这样,采集的ADC电压值才是实时采集的电压值。放在while外面,则采集的电压值为第一次的电压值,且读取的电压值不会变化。对于4096的值来源在于ADC采集的数值是12位ADC,即是2的12次方。
2、中断查询ADC程序
对于中断查询采集ADC程序主要是在ADC.C和main函数中有差别。具体ADC.C程序为:
void ADC1_Init(void)
{
ADC1_GPIO_Config();
ADC1_Mode_Config();
ADC_NVIC_Config();
}
static void ADC_NVIC_Config(void)
{
NVIC_InitTypeDef NVIC_InitStructure;
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1);
NVIC_InitStructure.NVIC_IRQChannel = ADC1_2_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
}
static void ADC1_GPIO_Config(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
//开启外部时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1 | RCC_APB2Periph_GPIOA,ENABLE);
//配置PA2引脚
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
//配置为模拟输入
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
//调用库函数
GPIO_Init(GPIOA, &GPIO_InitStructure);
}
static void ADC1_Mode_Config(void)
{
//ADC1_ configuration
ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;
//独立ADC模式
ADC_InitStructure.ADC_ScanConvMode = DISABLE;
//禁止扫描模式
ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
//开启连续转换模式
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; //不使用外部触发转换
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; //采集数据右对齐
ADC_InitStructure.ADC_NbrOfChannel = 1; //要转换的通道数目1
ADC_Init(ADC1,&ADC_InitStructure);
//配置ADC时钟,为PCLK2的8分频,即9Mhz
RCC_ADCCLKConfig(RCC_PCLK2_Div8);
//配置ADC1的通道2位55.5个采集周期
ADC_RegularChannelConfig(ADC1,ADC_Channel_2, 1, ADC_SampleTime_55Cycles5);
ADC_ITConfig(ADC1, ADC_IT_EOC, ENABLE); //开启ADC采集中断
ADC_Cmd(ADC1,ENABLE);
//复位校准寄存器
ADC_ResetCalibration(ADC1);
//等待校准寄存器复位完成
while(ADC_GetResetCalibrationStatus(ADC1));
//ADC校准
ADC_StartCalibration(ADC1);
while(ADC_GetCalibrationStatus(ADC1));
//由于没有使用外部触发,所以使用软件触发ADC转换
ADC_SoftwareStartConvCmd(ADC1,ENABLE);
}
对于main函数如下:
int main(void)
{
USART3_Config();
ADC1_Init();
printf("输入ADC值");
while(1)
{
ADC_ConvertedValueLocal =(float)ADC_ConvertedValue/4096*3.3; //读取ADC转换的值
printf("rn the current AD value = 0x%04X rn",ADC_ConvertedValue);
printf("rn the current AD value = %f V rn",ADC_ConvertedValueLocal);
Delay(0xFFFFEE);
}
}
void ADC_IRQHandler(void)
{
IF (ADC_GetITStatus(ADC1, ADC_IT_EOC) == SET)
{
ADC_ConvertedValue = ADC_GetConversionValue(ADC1);
}
ADC_ClearITPendingBit(ADC1, ADC_IT_EOC);
}
在引入void ADC_IRQHandler(void)这个中断服务函数之前,一定要进行
#define ADC_IRQHandler ADC1_2_IRQHandler
否则中断无法执行,无法进行ADC采集。
3、DMA模式的ADC采集程序
采用这种方式的ADC采集程序,其在ADC.C程序为:
void ADC1_Init(void)
{
ADC1_GPIO_Config();
ADC1_Mode_Config();
}
static void ADC1_GPIO_Config(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
//开启外部时钟
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1,ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1 | RCC_APB2Periph_GPIOA,ENABLE);
//配置PA2引脚
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
//配置为模拟输入
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
//调用库函数
GPIO_Init(GPIOA, &GPIO_InitStructure);
}
static void ADC1_Mode_Config(void)
{
DMA_InitTypeDef DMA_InitStructure;
ADC_InitTypeDef ADC_InitStructure;
DMA_DeInit(DMA1_Channel1);
DMA_InitStructure.DMA_PeripheralBaseAddr = ADC1_DR_Address;
DMA_InitStructure.DMA_MemoryBaseAddr = (u32)&ADC_ConvertedValue;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
DMA_InitStructure.DMA_BufferSize = 1;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Disable;
DMA_InitStructure.DMA_PeripheralDataSize= DMA_PeripheralDataSize_HalfWord; DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_Init(DMA1_Channel1,&DMA_InitStructure);
DMA_Cmd (DMA1_Channel1,ENABLE);
//ADC1_ configuration
ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;
//独立ADC模式
ADC_InitStructure.ADC_ScanConvMode = DISABLE;
//禁止扫描模式
ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
//开启连续转换模式
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; //不使用外部触发转换
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; //采集数据右对齐
ADC_InitStructure.ADC_NbrOfChannel = 1; //要转换的通道数目1
ADC_Init(ADC1,&ADC_InitStructure);
//配置ADC时钟,为PCLK2的8分频,即9Mhz
RCC_ADCCLKConfig(RCC_PCLK2_Div8);
//配置ADC1的通道2位55.5个采集周期
ADC_RegularChannelConfig(ADC1,ADC_Channel_2, 1, ADC_SampleTime_55Cycles5);
ADC_DMACmd(ADC1,ENABLE);
ADC_Cmd(ADC1,ENABLE);
//复位校准寄存器
ADC_ResetCalibration(ADC1);
//等待校准寄存器复位完成
while(ADC_GetResetCalibrationStatus(ADC1));
//ADC校准
ADC_StartCalibration(ADC1);
while(ADC_GetCalibrationStatus(ADC1));
//由于没有使用外部触发,所以使用软件触发ADC转换
ADC_SoftwareStartConvCmd(ADC1,ENABLE);
}
在这里需要对ADC1_DR_Address地址值进行定义,具体定义可以在ADC.H文件中,表现为:#define ADC1_DR_Address ((u32)0x40012400+0x4c)
在main中函数为:
int main(void)
{
USART3_Config();
ADC1_Init();
printf("输入ADC值");
while(1)
{
ADC_ConvertedValueLocal =(float)ADC_ConvertedValue/4096*3.3; //读取ADC转换的值
printf("rn the current AD value = 0x%04X rn",ADC_ConvertedValue);
printf("rn the current AD value = %f V rn",ADC_ConvertedValueLocal);
Delay(0xFFFFEE);
}
}
通过实际测试,三种程序处理方式得到的结果都是一样,这表明三种方式是可行的。不过后续在具体功能程序设计时,建议采用中断查询或者DMA模式。