在未来的太阳能设计中,该电流可能会予以补偿,直流元件会通过测量交流电流的平均值来计算。因此,逆变器控制环路中所使用的直流偏移应该尽可能的低。直流偏移可导致网络分配变压器产生饱和。为了减小这个直流偏移,目前一些公司正在开发新的逆变器拓扑技术。
本文引用地址:当太阳能电池板所产生的电能反馈回电网时,可以采用两种连接方式:一是将太阳能电池组件与逆变器连接,经变压器接入电网(见图1);二是将逆变器直接与电网连接,不使用变压器(无变压器系统)(见图2)。
另外一个解决方案是不将电能送进电网,而是用于对自动化装置的电池进行充电。这就是“离网”。对于偏僻建筑的应用,例如澳大利亚、加拿大或第三世界国家村庄,以及路标和地下照明等。
现在,市场上已有500W到10kW功率的太阳能逆变器,甚至还有高达500kW的太阳能装置,例如大型体育馆地下停车场的照明系统使用寿命可长达20年。两种类型的系统(有变压器和无变压器)均可提供一个单相输出(用于较小功率系统)或三相输出(用于大功率系统),这取决于电网和电力装置。
传感器优化光伏系统" width="500" height="192" title="采用电流传感器优化光伏系统">
采用优化
根据系统设计目的不同(包括尺寸、重量、稳固性、与电网的电气分离、价格、效率和损失),现在大多使用两种或三种不同的逆变器。为了提高效率和保护性能,对所有类型太阳能逆变器内的电流进行测量是很重要的。
由于无变压器的设计不会产生电能损失,因此是有效的类型。在这种配置中,有时在光伏(PV)方阵和逆变器(DC/AC)之间使用一台升压转换器将组件的电压转换成逆变器的输入电压。
通常采用功率点跟踪(MPPT)组件来确保方阵工作在功率运行水平。通过使用具有跟踪功能的电流和电压传感器,应用一种特殊软件算法和专用电子元件一起来控制电池板(电池)的工作点。一般来说,一台可用于测量单相输出(供到电网的电流),而另一台传感器可用于测量输入直流电流(10~25A)。在三相输出的情况下,两台传感器可用于测量三相输出的交流电流。接入电网的DC/AC逆变器是一台将直流转换为正弦波的全桥逆变器。
流入电网的逆变器输出电流(15~50A)由一台传感器进行测量,以便反馈至控制器进行正弦波脉宽调制(PWM)控制。控制器主要基于供有+5V电压并与电子控制系统其他有源元件共享基准电压的或DSP(器)。LEM公司的HMS电流传感器通过一个+5V电源来运行,其内部基准电压(2.5V)由一个单独的端子提供,允许通过DSP或微处理器轻松使用传感器。但是,传感器还能接受来自这些相同DSP的外部基准电压(2~2.8V),并从这些DSP上获得其自身基准电压。控制系统所有电子元件之间的这种用法使得整个应用效率更高(错误计算中的基准漂移消除)。HMS电流传感器非常适合太阳能逆变器所需要的所有电流测量。
电流传感器可用于峰值电流检测,用于真实值与设定点的对比。逆变器还在控制输出频率的系统中使用电流传感器。实际上,无论频率何时移出预选范围,逆变器都会停止运行一段时间(小于2s)。
由于在电网上(交流侧)需要不能超出的低直流值,因此偏移和温度漂移必须尽可能。对电网连接的另一个要求是不能将直流电流接入电网。由传感器偏移或IGBT通信产生的直流电流可能会影响电网正常运行。该电流可能会使变压器产生饱和,这样会使网络产生更多损失和更多谐波。对于无变压器配置,这不是个大问题。
尽管各国对直流电流都有不同的接受值,但是共同要求都是标称输出电流的0.5%或1%,或者在一些国家是一个限定值(英国为20mA、德国和比利时、荷兰、卢森堡为1A、日本为100mA、中国和美国为50mA)。如果直流电流大于这个限定值,则必须将系统与电网断开。对于是否需要测量直流电流或只是检测临界值,现在还没有清晰的界定。
在未来的太阳能设计中,该电流可能会予以补偿,直流元件会通过测量交流电流的平均值来计算。因此,逆变器控制环路中所使用的电流传感器直流偏移应该尽可能的低。直流偏移可导致网络分配变压器产生饱和。为了减小这个直流偏移,目前一些公司正在开发新的逆变器拓扑技术。
HMS电流传感器可用于诸如电力逆变器(太阳能、风力等)等工业场合以及家用电器、变速驱动器、UPS、开关电源(SMPS)和空调,使这些设备的效率更高。
相关文章