DC-DC 升压电路,如何选择电感值

发布时间:2024-03-27  

在领域非常重要,但是电感值的选择并不总是像通常假设的那样简单。在 dc - dc 升压转换器中,所选电感值会影响输入电流纹波、输出电容大小和瞬态响应。选择正确的电感值有助于优化转换器尺寸与成本,并确保在所需的导通模式下工作。本文讲述的是在一定范围的输入电压下,计算电感值以维持所需纹波电流和所选导通模式的方法,并介绍了一种用于计算输入电压上限和下限模式边界的数学方法。

本文引用地址:


导通模式

升压转换器的导通模式由相对于直流输入电流 (IIN) 的电感纹波电流峰峰值 (ΔIL) 的大小决定。这个比率可定义为电感纹波系数 (KRF)。电感越高,纹波电流和 KRF 就越低。


(1) , 其中


(2)
在连续导通模式 (CCM) 中,正常开关周期内,瞬时电感电流不会达到零 (图1)。因此,当 ΔIL 小于 IIN 的2倍或 KRF <2时,CCM 维持不变。MOSFET 或二极管必须以 CCM 导通。这种模式通常适用于中等功率和高功率转换器,以最大限度地降低元件中电流的峰值和均方根值。当 KRF > 2 且每个开关周期内都允许电感电流衰减到零时,会出现非连续导通模式 (DCM) (图2)。直到下一个开关周期开始前,电感电流保持为零,二极管和 MOSFET 都不导通。这一非导通时间即称为 tidle。DCM 可提供更低的电感值,并避免输出二极管反向恢复损耗。


图1 – CCM 运行

图2 – DCM 运行

当 KRF = 2 时,转换器被认为处于临界导通模式 (CrCM) 或边界导通模式 (BCM)。在这种模式下,电感电流在周期结束时达到零,正如 MOSFET 会在下一周期开始时导通。对于需要一定范围输入电压 ( VIN)的应用,固定频率转换器通常在设计上能够在最大负载的情况下在指定 VIN 范围内,以所需要的单一导通模式 (CCM 或 DCM) 工作。随着负载减少,CCM 转换器最终将进入 DCM 工作。在给定 VIN 下,使导通模式发生变化的负载就是临界负载(ICRIT)。在给定 VIN 下,引发 CrCM / BCM 的电感值被称为临界电感(LCRIT),通常发生于最大负载的情况下。


纹波电流与 VIN

众所周知,当输入电压为输出电压 (VOUT) 的一半时,即占空比 (D) 为50%时 (图3),在连续导通模式下以固定输出电压工作的 DC-DC 升压转换器的电感纹波电流最大值就会出现。这可以通过数学方式来表示,即设置纹波电流相对于 D 的导数 (切线的斜率) 等于零,并对 D 求解。简单起见,假定转换器能效为100%。
根据


(3)、


(4) 和


(5),
并通过 CCM 或 CrCM 的电感伏秒平衡


(6),


(7).
将导数设置为零,


(8)
我们就能得出


(9).

图3 – CCM 中的电感纹波电流

CCM 工作

为了选择 CCM 升压转换器的电感值 (L),需要选择最高 KRF 值,确保整个输入电压范围内都能够以 CCM 工作,并避免峰值电流受 MOSFET、二极管和输出电容影响。然后计算得出最小电感值。KRF 最高值通常选在0.3和0.6之间,但对于 CCM 可以高达2.0。如前所述,当 D = 0.5 时,出现纹波电流 ΔIL 最大值。那么,多少占空比的情况下会出现 KRF 最大值呢?我们可以通过派生方法来求得。
假设 η = 100%, 则


(10),
然后将(2)、(6)、(7) 和 (10) 代入(1) ,得出:


(11)


(12).
对 D 求解,可得


(13).
D = 1 这一伪解可被忽略,因为它在稳态下实际上是不可能出现的 (对于升压转换器,占空比必须小于1.0)。因此,当 D =⅓ 或 VIN = ⅔VOUT 时的纹波因数 KRF 最高,如图4所示。使用同样的方法还能得出在同一点的最大值 LMIN、LCRIT 和 ICRIT。


图4 – 当 D =⅓ 时 CCM 纹波系数 KRF 最高值


对于 CCM 工作,最小电感值 (LMIN)应在最接近 ⅔ VOUT 的实际工作输入电压 (VIN(CCM)) 下进行计算。根据应用的具体输入电压范围,VIN(CCM) 可能出现在最小 VIN、最大 VIN、或其间的某个位置。解方程 (5) 求 L,并根据 VIN(CCM) 下的 KRF 重新计算,可得出


(14),其中 VIN(CCM) 为最接近⅔VOUT 的实际工作 VIN。
对于临界电感与 VIN 和 IOUT 的变化,KRF = 2,可得出


(15).
在给定 VIN 和 L 值的条件下,当 KRF = 2时,即出现临界负载 (ICRIT):


(16)


DCM 工作

如图5所示,在一定工作 VIN 和输出电流 (IOUT) 下的电感值小于 LCRIT 时,DCM 模式工作保持不变。对于 DCM 转换器,可选择最短的空闲时间以确保整个输入电压范围内均为 DCM 工作。tidle 最小值通常为开关周期的3%-5%,但可能会更长,代价是器件峰值电流升高。然后采用 tidle 最小值来计算最大电感值 (LMAX)。LMAX 必须低于 VIN 范围内的最低 LCRIT。对于给定的 VIN,电感值等于 LCRIT (tidle= 0) 时引发 CrCM。


图5 – LCRIT 与标准化 VIN 的变化


为计算所选最小空闲时间 (tidle(min)) 的 LMAX,首先使用 DCM 伏秒平衡方程求出 tON(max) (所允许的 MOSFET 导通时间最大值) 与 VIN 的函数,其中 tdis 为电感放电时间。


(17),其中


(18)
可得出


(19).
平均 (直流) 电感电流等于转换器直流输入电流,通过重新排列 (17),可得出 tdis 相对于 tON 的函数。简单起见,我们将再次假设 PIN = POUT。


(20) ,其中


(21).
将方程 (3)、(5)、(10)、(19) 和 (21) 代入 (20),求得 VIN (DCM) 下的 L


(22).
LMAX 遵循类似于 LCRIT 的曲线,且同在 VIN = ⅔VOUT 时达到峰值。为确保最小 tidle,要计算与此工作点相反的实际工作输入电压 (VIN (DCM)) 下的最低 LMAX 值。根据应用的实际输入电压范围,VIN(DCM) 将等于最小或最大工作 VIN。若整体输入电压范围高于或低于 ⅔ VOUT(含⅔ VOUT),则 VIN(DCM) 是距 ⅔ VOUT 最远的输入电压。若输入电压范围覆盖到了 ⅔ VOUT,则在最小和最大 VIN 处计算电感,并选择较低 (最差情况下) 的电感值。或者,以图表方式对 VIN 进行评估,以确定最差情况。


输入电压模式边界

当升压转换器的输出电流小于 ICRIT 与 VIN 的最大值时,如果输入电压增加到高于上限模式边界或下降到低于下限模式边界,即 IOUT 大于 ICRIT 时,则将引发 CCM 工作。而 DCM 工作则发生于两个 VIN 的模式边界之间,即 IOUT 小于 ICRIT 时。要想以图表方式呈现 VIN 下的这些导通模式边界,在相同图表中绘制临界负载 (使用所选电感器) 与输入电压和相关输出电流的变化曲线。然后在 X 轴上找到与两条曲线相交的两个 VIN 值 (图6)。


图6 – 输入电压模式边界


要想以代数方式呈现 VIN 的模式边界,首先将临界负载的表达式设置为等于相关输出电流,以查找交点:


(23).
这可以重写为一个三次方程,KCM 可通过常数计算得出


(24) 其中


(25).
这里,三次方程通式 x3 + ax2 + bx + c = 0 的三个解可通过三次方程的三角函数解法得出 [1] [2]。在此情况下,x1 项的“b”系数为零。我们将解定义为矢量 VMB。
我们知道


(26)、


(27)、 以及


(28),



(29).
由于升压转换器的物理限制,任何 VMB ≤ 0或VMB > VOUT 的解均可忽略。两个正解均为模式边界处 VIN 的有效值。


模式边界 – 设计示例

我们假设一个具有以下规格的 DCM 升压转换器:
VOUT = 12 V
IOUT = 1 A
L = 6 μH
FSW = 100 kHz
首先,通过 (25) 和 (28) 计算得出 KCM 和 θ:




.
将 VOUT 和计算所得的 θ 值代入 (29),得出模式边界处的 VIN 值:



.
忽略伪解 (-3.36 V),我们在 4.95 V 和 10.40 V 得到两个输入电压模式边界。这些计算值与图7所示的交点相符。


图7 – 计算得出的模式边界


结论

电感值会影响升压转换器的诸多方面,若选择不当,可能会导致成本过高、尺寸过大、或性能不佳。通过了解电感值、纹波电流、占空比和导通模式之间的关系,设计人员就能够确保输入电压范围内的所需性能。


参考文献

[1] H. W. Turnbull, Theory of Equations, Chapter IX, Edinburgh & London: Oliver and Boyd, 1952.
[2] I. J. Zucker, "The cubic equation - a new look at the irreducible case," The Mathematical Gazette, vol. 92, no. 524, pp. 264-268, July 2008.


文章来源于:电子产品世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>