均衡电流,实现车规智能驱动器的最佳性能

发布时间:2024-01-29  

在汽车系统中做分布式智能设计时,对于智能功率开关,确保保护机制是否真正实现了智能至关重要,尤其是在涉及多通道驱动器的场景中,因为即使是轻微的电流失衡或意外的负载短路都会影响保护效果。

在管理和分配汽车电池包到各种组件(ECU、电机、车灯、传感器等)方面发挥着关键作用,这些多通道驱动器同时控制不同的电气负载,例如,电阻式执行器、电感式执行器和电容式执行器。所有通道的电流都保持均衡对于驱动器正常运行并确保车辆正常且高效地运行至关重要。在电路布局中,任何造成电流通过特定金属路径集中的轻微电流失衡、负载损坏或失效以及接线不当等意外情况,都可能导致局部电路出现电流聚集效应。电流失衡现象将会导致芯片过热和热点聚集,最终损坏或烧毁元件。

虽然做了热模拟实验和预防措施,但仍需检查和验证智能保护机制的实现情况,这有助于发现可能影响干预时效的潜在问题。

智能开关中的热检测

高边开关需要在空间非常小的紧凑封装内处理大电流,对于能否高效地管理热量,电流均衡是一个重要的影响因素。智能功率开关通常安装在通风和散热不良的封闭区域,这使得热管理变得更加重要。

因此,保护机制的智能性能取决于嵌入式热诊断功能,这些基于热检测和保护机制的诊断功能用于监测驱动器的温度,并在温度超过预设阈值时执行保护操作。准确度是测温技术面临的一个难题,因为多通道驱动器的电流均衡度对测温准确度影响很大。

局部电流密度突然变高或短路情况是设计人员非常关心的一个问题,这两种现象会产生分散的热点,导致突发性的热聚集效应,使温度骤然升高。这些情况可能导致过热和元器件失效,而且维修成本高昂。

为了防止热冲击损坏元器件,保护电路被设计为限制电流并使功率MOSFET保持在安全工作区域(SOA)内,直到触发热关闭功能,关闭驱动器。然而,这种类型的保护可能会在功率器件表面产生物理应力。为满足电浪要求和工艺容差,限流值需要设置得较高,但是,当驱动短路负载时,较高的限流值会导致芯片表面的温度快速上升。温度骤变会在芯片表面产生巨大的热梯度,从而产生热机械应力,影响器件的可靠性。

VIPower M0-9的解决方案是在高边驱动器低温区和高温区分别集成一个温度传感器(如图1所示)。

图 1 :具有不同温度传感器的智能开关的原理图

温度传感器采用多晶硅二极管制造技术,因为多晶硅二极管的温度系数在整个工作温度范围内保持很好的线性。低温传感器置于驱动器内部靠近控制器侧的低温区,而高温传感器则位于功率级区域,这是驱动器内部温度最高的区域。

这种双传感器技术可以限制驱动器的温度升幅,因为当温度达到过温阈值,或者两个传感器动态温度差值达到阈值,热保护就会触发。一旦过热故障消失,当温度降低到恢复值时,智能开关重新激活。

这个方法有助于减少开关上的热机械应力引起的热疲劳。热机械应力会随着时间的推移而变大,导致开关性能和可靠性降低。

热测图

除了热模拟实验和预防方法,红外(IR)热成像技术也是一种获取驱动器热测图的有效技术,可以让设计人员全面了解集成电路内的热量分布,揭示所有潜在的危险因素。

为了评估智能保护电路在恶劣的车用环境中的保护效果,必须在两种不同的应用场景和恶劣的短路条件下分析驱动器内的热量分布:

•端子短路(TSC)

•负载短路(LSC)

端子短路是当元器件或设备的端子之间存在低电阻连接的情况,如图2所示。

图2:在 TSC条件下的温度测量测试电路

另一方面,当负载和电源之间存在感应路径时,就会出现负载短路情况,导致电流突然激增(图3)。

图3:在 LSC条件下的温度测量测试电路

测试条件如下:

•Tamb = 25 °C

•Vbat = 14 V

•当热成像时,Ton = 1 ms

•当捕捉热传感器和热点的温度时,Ton = 300 ms

•TSC条件: RSUPPLY = 10 mΩ, RSHORT = 10 mΩ

•LSC 条件: RSUPPLY = 10 mΩ, LSHORT = 5 µH, RSHORT = 100 mΩ

其中,

•Tamb是环境温度

•Vbat直流电池电压

•Ton是短路时长

•RSUPPLY是电池内阻

•RSHORT是短路电阻

•LSHORT是短路电感

为了生成热测图,我们使用了红外摄像机捕捉每个位置辐射的红外线,然后将其转换成温度值。为了确保特定颜色转换为正确的温度值,校准是一个必不可少的重要过程。该过程是比较传感器拍摄的不同颜色与已知温度值,分析特定的热敏参数及其随温度升高的趋势。通过分析这些参数,校准过程可以确保热图准确地反映被扫描区域的温度分布。

为了校准红外摄像传感器,选用 MOSFET 体漏极二极管的正向电压 (VF),因为它与温度呈线性关系。然而,需要对二极管进行预校准才能准确的确定其温度系数。在 25°C 至 100°C 范围内改变温度的同时,测量恒定正向电流 (IF)的电压VF,即可确定二极管的温度系数。为防止电流及其相关功耗引起温升,IF 取值应在 10mA 至 20mA 范围内。

用在不同温度条件下采集的VF值进行线性插值和数学拟合计算,得到二极管的温度系数,如图4所示。

图4 :MOSFET体漏极二极管的预校准

用下列公式计算 (1):

其中:

•Dt是温度变化量;

•DVF是正向电压变化;

•K 是二极管的温度系数。

要创建热图,先用红外成像传感器以 1ms 的间隔拍摄每个温度点。在拍摄完芯片上的所有点位后(大约需要 3000 秒),专用软件就会生成热图,根据红外传感器的最小空间分辨率描绘每个点位的温度。把热图放到芯片行图上面,就可以识别工作区域中最热的热点,当电流流过器件时,就可以确定这些热点的坐标。

图 5 所示是VND9012AJ 双通道智能开关在 TSC 条件下的热图。

均衡电流,实现车规智能驱动器的最佳性能

图 5:VND9012AJ 通道在 TSC 条件下的热图

热测图法是在25°C 到150°C 温度范围内利用不同颜色描述驱动器各个通道的温度分布情况,这是一个检测任何过热区域、确保驱动器在安全温度内工作的重要方法。通过提供每个通道在不同工况下的热图,热图测试法可以验证驱动器的工作可靠性,而无需将温度提高到最大阈值。

为了找到热点并监测高温传感器和低温传感器的温度变化,验证热关断机制的效果,在实验中必须考虑把短路时长延长到300ms。

图 6 所示是在TSC 时观察到的VND9012AJ的温度变化。

图 6:两个传感器在 TSC 条件下的温度变化

上图表明,高温传感器检测到 VND9012AJ 的两个通道中都存在热点,这些热点的最高温度在 150 °C 范围内。

图 7 所示是VND9012AJ 在 LSC 条件下的热图。

均衡电流,实现车规智能驱动器的最佳性能

图 7:VND9012AJ 通道在LSC 条件下的热图

图 8所示是在LSC 条件下观察到的VND9012AJ的温度变化。

图 8:两个传感器在LSC 条件下的温度变化

这两种情况都会触发热保护机制,把电流限制在安全水平。

结论

实验结果让我们能够深入洞悉智能开关的设计和开关操作特性,特别是电流分布和热保护机制,为我们提供宝贵的数据。确保所有通道的电流都保持均衡,对于提高汽车智能功率驱动器的安全性和可靠性至关重要。红外热成像技术可以精确、全面的分析温度分布情况,增强智能开关的热感测和保护系统的性能。在要求苛刻的汽车环境中,快速激活这些保护功能对检测过热现象、防止设备或系统损坏至关重要。

参考文献

[1]P. Meckler and F. Gerdinand, "High-speed thermography of fast dynamic processes on electronic switching devices", 26th International Conference on Electrical Contacts (ICEC 2012), 2012.

[2]X. Zhou and T. Schoepf, "Detection and formation process of overheated electrical joints due to faulty connections", 26th International Conference on Electrical Contacts (ICEC 2012), 2012.

[3]T. Israel, M. Gatzsche, S. Schlegel, S. Großmann, T. Kufner, G. Freudiger, "The impact of short circuits on contact elements in high power applications", IEEE Holm Conference on Electrical Contacts, 2017.

[4]Y. Lozanov, "Assessment of the technical condition of electric contact joints using thermography", 17th Conference on Electrical Machines, Drives and Power Systems (ELMA), 2021.

[5]M. Bonarrigo, G. Gambino, F. Scrimizzi, "Intelligent power switches augment vehicle performance and comfort", Power Electronics News, Oct. 10, 2023.

文章来源于:21IC    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    长兼总经理王升杨受邀出席并发表主题演讲,分享了关于新能源汽车芯片国产化的践行与思考。 广告 纳芯微王升杨出席WNEVC 2022并发表演讲 应对全球气候变化挑战,在碳减排和提高能源效率的目标驱动......
    器。该产品不仅提供强大的功率输出,而且占用空间小、安装紧凑、重量更轻、可并联和易于维护。安装与维护改变应用大功率驱动器方式这款500 kW大功率模块,将500KW功率......
    提高电流承载能力。 高功率应用:适合电动汽车等需要大电流驱动的应用。 得益于其超低导通电阻和高功率承载能力,能够在短时间内将系统温度提升到设定值,提高汽车加热系统工作效率,适用......
    基于STM32交流永磁同步电机对控制单元和功率驱动单元的设计;引言 近年来,随着微电子技术、电力电子技术、现代控制技术、材料技术的迅速发展以及电机制造工艺水平的逐步提高,交流......
    系统以闭环的形式精确控制了执行机构(电机等机械传动装置)的输出变量。 1、构成 伺服驱动器主要由伺服控制单元、功率驱动单元、通讯接口单元组成。其中伺服控制单元包括位置控制器、速度控制器、转矩和电流控制器等。 伺服驱动......
    MAX8595Z数据手册和产品信息;MAX8595Z/MAX8596Z以恒定的电流和高效率驱动多达8个白色LED,为蜂窝电话、PDA和其它手持设备提供LCD背光照明。串联连接使LED电流相同,从而......
    于其超低导通电阻和高功率承载能力,能够在短时间内将系统温度提升到设定值,提高汽车加热系统工作效率,适用于汽车座椅加热、方向盘加热等热管理应用场景。 DR8112直驱马达驱动芯片 直驱设计:集成功率驱动,简化系统设计,降低......
    率驱动芯片、固态存储控制芯片等半导体项目荣获国家级大奖;2021年11月3日,2020年度国家科学技术奖奖励大会在北京人民大会堂隆重举行。 据悉,本次技术奖共评选出264个项目,包括46项国......
    东南大学科研团队在氮化镓(GaN)功率驱动芯片技术研究中取得新进展;日前,东南大学电子科学与工程学院孙伟锋教授团队在氮化镓(GaN)功率驱动......
    “奖项。 纳芯微作为国内高性能高可靠性模拟及混合信号芯片设计公司,基于“可靠、可信赖、持续学习、坚持长期价值”的核心价值观,自2013年成立以来,聚焦信号感知、系统互联与功率驱动的产品布局,经过......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>