使用单输出栅极驱动器实现高侧或低侧驱动

发布时间:2023-10-18  

摘要

本文引用地址:

在许多隔离式电源应用中,功率 MOSFET 通常采用某种形式的桥配置,用于优化电源开关电源变压器,从而提高效率。这些桥配置创建了高侧 (HS) 和低侧 (LS) 两种开关类型。UCC277xx、UCC272xx 和 LM510x 系列等专用 HS 和 LS 栅极驱动器 IC 可在单个 IC 中为 HS 开关管以及 LS 开关管提供输出。

相比之下,某些应用通过使用单输出栅极驱动器(例如 UCC2753x 或隔离式 UCC53xx 系列),而不是将 HS 和LS 组合为一个半桥驱动器,也能实现巨大优势。单输出驱动器的位置可以更靠近电源开关,带来更大的布局灵活性和更少的寄生效应,从而实现出色的开关性能。

1 引言

HS 开关管请参阅图 1-1 中的 Q1 和 Q2。这些开关具有浮动的源极连接,并且此基准上的电压在开关周期内会发生变化。Q3 和 Q4 被视为 LS 开关管,因为它们的源极基准连接到输入地,并且在开关周期内不会改变电压。当Q1 和 Q3 同时导通或者 Q2 和 Q4 同时导通时,将为 Vout 供电。对于节 2 中的电路示例,我们将仅关注使用 Q1和 Q3 的桥部分。

1697608175838651.png

图 1-1. 具有高侧和低侧初级 MOSFET 的全桥功率级

要在高功率应用中正确打开这些开关,通常需要栅极驱动 IC。要正确驱动 LS 开关管,通常非常简单,因为栅极驱动器的输出可以直接连接到开关的栅极,并且驱动器 IC 的 GND 连接到开关的源极。但是,要驱动 HS 开关管,还必须注意以下事项:

1. 对于栅极驱动器输出信号本身,需要电平转换器或隔离式信号收发器(例如数字隔离器),以确保栅极保持高于源极的适当电压,从而正确打开 HS 开关管。随着 Q1 的源极(栅极驱动器的 GND)在 Q1 导通期间上升,驱动器需要其基准电压密切跟随 Q1 源极并保持信号电压和基准电压之间的差异。此外,该驱动器的GND 需要与控制器地隔离,因为 Q1 源极在 0V 和 400V 等较高电压之间移动。

2. HS 栅极驱动器还需要某种辅助电源,该电源可以浮动,并在源极升至输入电压时保持适当的导通偏置。否则,当 Q1 源极电压升高时,栅极驱动器将关断。这通常通过以下方式来实现:使用自举电路、隔离式辅助电源,或使用栅极驱动变压器将栅极驱动器与开关节点基准隔离。

2 高侧驱动方法

2.1 栅极驱动变压器解决方案

1697608225815311.png

图 2-1. 高侧栅极驱动变压器

信号隔离

在图 2-1 中,U1 的输出信号通过使用 T1 进行隔离。变压器允许到 Q1 的栅极信号具有浮动基准,该基准可以随开关节点电压的变化而变化。添加了 C4 和 C6 等直流阻断电容器以及整流器 D1 和 D2,以添加 C6 的失调电压,从而防止变压器中失衡。Q0 和 R0 用于关闭电源开关。

高侧偏置

在图 2-1 中,不需要隔离式电源或自举电源。在该配置中,栅极驱动器以与控制器和 Vbias1 相同的地为基准。因此,偏置电压可由 Vbias1 直接提供。

2.2 具有电容式信号隔离的自举辅助电源解决方案

信号隔离

1697608270299183.png

图 2-2. 使用基于电容器的信号隔离的高侧自举电路

在图 2-2 中,U1 的输入使用 U3 进行隔离。U3 是电容式信号隔离器 ISO77xx。即使具有较大的共模接地压摆率,电容式隔离器也可正确地发出信号。与光耦合器相比,它们在使用寿命和温度范围内更稳定,并且没有栅极驱动变压器的占空比限制。

高侧偏置

在图 2-2 中,当 Q1 打开时,Dboot 和 Cboot 用作正确偏置 U1 的自举电路。当 Q1 关闭时,Dboot 正向偏置,并且在 Cboot 充电时,U1 直接由 Vbias1 供电。当 Q1 导通时,开关节点电压会增加到 HVDC,Dboot 被反向偏置并保护Vbias1,并且当 Cboot 将其电荷清空到 U1 的 VDD 引脚时,U1 被供电。Cboot 产生的这种电荷必须足以在 Q1 整个导通期间使 Q1 保持开启。Dboot 和 Cboot 的大小超出了本文的讨论范围。在 UCC27712 数据表中,请参阅 来选择 Cboot,并参阅 来选择 Dboot。

2.3 具有隔离式高侧栅极驱动器的隔离式辅助电源解决方案

1697608305159348.png

图 2-3. 高侧隔离式驱动器和辅助电源

信号隔离

在图 2-3 中,对高侧使用隔离式栅极驱动器隔离输入信号,对低侧使用 ISO77xx。

高侧偏置

在图 2-3 中,U1(隔离式栅极驱动器 UCC53xx)用作高侧驱动器,并使用电源侧的隔离式辅助电源和信号侧的VCC 供电。电源 Vbias1 以非隔离式 UCC27531 的 GND 引脚或电源地为基准,也为高侧提供浮动偏置。这与UCC27531EVM-184 或 UCC5390SCDEVM-010 中的配置类似,其中使用了非稳压隔离式电源(例如SN650x)。

2.4 采用隔离式高/低侧栅极驱动器的自举辅助电源解决方案

1697608341534877.png

图 2-4. 采用高侧自举电路的隔离式驱动器

信号隔离

在图 2-4 中,U1 的输入信号通过隔离式栅极驱动器 UCC53xx 进行隔离。这样,即使信号参考(开关节点)在整个开关周期内改变电压,信号也能正常工作。它还将控制器地与开关节点和电源地隔离。

高侧偏置

在图 2-4 中,Dboot 和 Cboot 用作正确偏置 U1 的自举电路。在 UCC27712 数据表中,请参阅 来选择 Cboot,并参阅 来选择 Dboot。

2.5 栅极驱动变压器解决方案

1697608369950430.png

图 2-5. 使用隔离式辅助电源的隔离式驱动器

信号隔离

在图 2-5 中,U1 的输入信号通过隔离式栅极驱动器 UCC53xx 进行隔离。隔离式辅助电源(变压器)允许到 Q1的栅极信号具有浮动基准,该基准可以随开关节点电压的变化而变化。

高侧偏置

在图 2-5 中,不需要信号隔离,因为栅极驱动器在内部提供信号隔离。在该配置中,由于隔离式辅助电源,不需要自举电源。Vbias1 以电源地为基准,为高侧提供浮动偏置。

3 结论

在信号路径和适当偏置方面,驱动 LS 开关管的栅极相当简单。但是,在桥配置中驱动 HS MOSFET 等源极浮动的开关管会在 HS 栅极驱动器的信号路径和偏置两方面带来一些挑战。本文提供了大量电路示例,展示了使用单输出栅极驱动器实现 HS 栅极驱动的不同方法。

文章来源于:电子产品世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    电机反转到底有什么影响?;常规的电机除特种结构,特种条件情况下不可逆转外,无论是直流还是交流都可以正反转。 普通中小型交流电机三相、单相、电容式,只要改变电机电源的相位即可。如接触器,倒顺......
    控制,还是用PLC形成网络,由此计算PLC输入、输出点。数,并且在选购PLC时要在实际需要点数的基础上留有一定余量(10%)。 2、确定负载类型根据PLC输出端所带的负载是直流型还是交流型,是大电流还是......
    速等要求,上位控制要求(如对端口界面和通讯方面的要求),主要控制方式是位置、转矩还是速度方式。供电电源是直流还是交流电源,或电池供电,电压范围。据此以确定电机和配用驱动器或控制器的型号。 2.选择步进电机还是......
    端口界面和通讯方面的要求),主要控制方式是位置、转矩还是速度方式。供电电源是直流还是交流电源,或电池供电,电压范围。据此以确定电机和配用驱动器或控制器的型号。 2.选择步进电机还是伺服电机系统? 答:其实......
    端口界面和通讯方面的要求),主要控制方式是位置、转矩还是速度方式。供电电源是直流还是交流电源,或电池供电,电压范围。据此以确定电机和配用驱动器或控制器的型号。 2.选择步进电机还是伺服电机系统? 其实......
    方式的接线图。计为这款电源设计采用交直流智能识别,为电源接线带来了极大的方便,具体表现在: 图1继电器输出方式接线图 1、如果现场供电是直流电,要求直流范围在20~72VDC范围内,电源......
    发现:即使接入驱动器的电流是直流电,仍可经过整流电路,将直流电压输送到直流母线。使用这种方法,驱动器及伺服电机在直流供电下仍可正常工作。 与此同时,有些驱动器也会提供直接供给直流母线的接口。但是相较于上文提到的接到原本交流......
    电机的速度是通过改变电机中的电压来控制的,而交流电机的速度是通过改变频率来控制的,最常见的是使用变频驱动器。   下面从五个方面分析:   1、首要两者的外部供电不同,直流电机运用直流电做为电源;而交流电机则是运用交流......
    静止时启动,电机就转不起来。若是在运行中缺相十分危险,电机电流增大1.2倍,发热严重,震动加剧,急易烧坏电机。变频器通过检测输出电流,就可以判断三相输出是否缺相。 变频器输入缺相的检测方法 当变......
    功率耗散可达0.8W,用于SFP+ MSA模块。 MAX3956在Rx输入、Rx输出以及Tx输入采用50Ω端接,支持差分交流耦合信号。Tx输出是直流耦合25Ω激光器二极管接口,激光器阳极(TOUTA......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>