基于ELM改进K-SVD算法的多特征融合物体成像识别

发布时间:2023-08-22  


本文引用地址:

0 引言

作为一项重要可用于恢复样品高分辨率和相位的技术,近几年来傅里叶叠层成像(FP) 取得显著进步[1,2]。样品高分辨率成像在大视场下完成的主要原因是具有相对较为简单的运行设施及FP 技术所需算法,实现的功能还包括三维重聚焦[3,4]。在处理稀疏矩阵时应用协同过滤算法,该算法基于内存分析完成建立,所以系统准确预测及高效运行均不能得到充分有效保障,此问题需将新算法引入完成处理,将原传统算法进行改进。在推荐算法中早已应用SVD 技术,表现出较强的降维性能,结果显示可显著改善数据稀疏性[5]。最初在搜索潜在语义领域应用SVD 技术,该算法被应用于推荐算法中,确定维数完成预测前,需按照含有奇异值对角矩阵、用户特征向量矩阵、低维项目特征向量矩阵分解高维用户- 项目评分矩阵,维数确定需结合奇异值大小及数量[6]

本文获取ELM 算法采用K-SVD 处理实现,并成功应用于多特征融合物体成像识别领域。

1 ELM改进

1.1 SVD梯度下降法

针对以SVD技术为基础的推荐算法,应用梯度下降法获取的优化效果较佳,优化原理为:将点集(X, Y)预先设置,特征变量及预测值分别对应X 和Y 变量,通过迭代学习对某X 特征采用机器学习模式查询获取估计函数,然后再获取估计值Y,通过该函数预测新数据[7]。设定点集X 内第n 个特征分量为xn,构建变量X = (x1,x2, ... xn),拟合函数h(x) 表达式为:

h(x)=a0+a1x1+a2x2+...anxn

式中,a 参数需通过迭代运算求解。同时判断真实值与预测值间的差异时需利用误差函数,利用该算法迭代求解,用以下形式表示该误差函数:

J(a)=1692712073285676.png   (1)

然后最小化J(a),求解最小J(a)主要依据各a值完成。用一个曲面或一条曲线代替J(a),同时参考数学分析理论基础,通过计算曲面或最低点替代最小值求解问题[8]。然后以最快速度并结合梯度最大方向完成最值搜索,求导J(a)后再按上述步骤进行求解。按照以下形式调整a表达式:

a i -1692712218636468.png J(a) = a i - α(h(x) - y)xi   (2)

学习效率高低用α表示,操纵迭代步长,最佳效果在未合理控制此参数的情况下将难以达到。

按照以下步骤应用梯度下降法完成计算:

第1步:确定初始值h 及误差阈值ε,同时要求ε > 0。

第2步:最小化误差函数J (a),然后再求解下降方向,计算1692712462338665.png

第3步:判断1692712529962506.pngJ(a)是否比ε小,将计算结果输出;否则则按上述步骤进行重新计算。

1.2 训练ELM算法

训练DELM-AE 算法的流程图如图1所示。在测试样本稀疏编码过程中,所利用字典选用全部的测试样本,测试样本标签值的判定则需依据重构误差最小准则。训练算法数据传输模式在隐含层及输入均选用全连接模式,学习参数用β 表示。同时选用单隐层ELM算法解析算法各层及前一层,有利于训练成本的大幅降低,单隐层ELM“输入层”用“输出层”代替。参考此方法可完成极限学习机网络模型的构建,实现自编码功能,训练参考以上步骤进行。

image.png

图1 ELM改进流程图

2 物体识别的应用

2.1 物体识别

在Coil-20 数据集中验证ELM 算法。旋转10°后再对每个物体进行照片采集,共计获得36×20 张图片。采用随机方式,在识别物体的过程中进行训练选取图片为18×20 个,专门用于测试的样本数据为剩余图片。

基于3 层ELM 算法完成隐含层节点在K-SVD 算法中的设定,然后完成20 个节点的选取,各个节点识别率在ELM 算法隐含层中的测试结果如表1所示。

表1 ELM算法的识别率

1692712718232736.png

为全方位评价字典学习结果,K-SVD 学习字典情况依据ELM 算法获取,具体结果见图2。通过ELM 算法,同时结合图2 详细数据,字典精确度和优势在处理后的提升效果均十分显著。

image.png image.png

图2 经过ELM预处理前后的字典

对比分析表2数据,发现应用不同算法获取的计算准确率不同,包括、SAE 算法及ELM 算法。数据结果显示,从收敛速度来看,K-SVD 算法相对较快,同时相比SAE 算法,该算法的收敛时间更短。因此,不论是从计算效率还是计算准确率来看,相比于ELM算法,改进的K-SVD算法表现出较佳的性能优势。

表2 Coil-20的实验结果

1692712842813081.png

2.2 多特征融合的物体识别

本实验采集数据环节抓取目标数据集时应用的机械臂由康奈尔大学机器研究实验室开发而成。由8 005 张图像及260 个对象构成数据集,图像拍摄和存储利用Kinect,利用机械臂抓取目标,按特定方向和适当的背景点云摆放各对象和设置各图像。同时按照24×24 的尺寸标准调整设置图像像素大小,任何彩色与深度的图片都涵盖在内,2 304 维的目标由各机械臂抓取,576维深度特征及1 728 维RGB 特征均包含在内。

经实验测试得到,共有3 个节点数均为100 的隐含层包含在ELM 网络模型中,识别效果良好,计算准确率结合实验测试结果最终为90.1%;参数条件设置一致,仅有RGB 特征存在的情况下,识别率仅为83.1%。参考上述分析得出,系统识别精度在应用深度特征后得到显著提升。本实验测试的具体结果可参考表3 与表4数据。

表3 三个隐含层ELM改进K-SVD算法识别率统计

1692712937196665.png

对比分析表3数据得出,实验过程中采用K-SVD算法但未应用深度信息的情况下, 识别准确率为76.3%,该项参数数据在使用深度特征信息后有显著提升,可达到81.4%的识别准确率;当深度信息匮乏的情况,ELM识别率为81.5%;新增深度信息后则增长至82.9%;除此之外,在对原始图像融合特征进行处理的过程中,将ELM 网络模型引入到前端,即使应用传统K-SVD算法也能获取89.83% 准确率较高的识别率,但是识别准确率在深度信息未涵盖的情况下仅为83.9%。K-SVD 算法性能可通过ELM 得到显著提升,当然算法识别准确率在多特征加入后也相应得到快速增长。

表4 多特征融合结果对比

1692713016108132.png

将较低分辨率的样本从图像中筛选出来,然后再将其分辨率进行恢复,有利于减少傅里叶叠层成像数量。

3 结束语

本文开展基于ELM 改进K-SVD 算法的多特征融合物体成像识别分析,得到如下有益结果:

1)不论是从计算效率还是计算准确率来看,改进的K-SVD 算法表现出较佳优势。

2)K-SVD 算法性能可通过ELM 显著提升,算法识别准确率在多特征加入后也相应快速增长。

参考文献:

[1] 何承刚,朱友强,王斌.基于粒子群优化的宏观傅里叶叠层成像位置失配校准[J].光学精密工程,2022,30(23):2975-2986.

[2] 宋东翰,王斌,朱友强,等.基于多尺度特征融合网络的傅里叶叠层成像[J].液晶与显示,2022,37(11):1476-1487.

[3] 浦东,何小亮,戈亚萍,等.基于宏观傅里叶叠层成像技术的光学传递函数测量[J].光学学报,2022,42(14):117-124.

[4] CHAMARA L L, ZHOU H, HUANG G B. Representational learning with ELMs for big data[J]. Intelligent Systems,IEEE,2013, 28(6):31-34.

[5] WIDROW B, GREENBLATT A, KIM Y, et al. The no-prop algorithm: a new learning algorithm for multilayer neural networks[J]. Neural Networks the Official Journal of the International Neural Network Society,2013,37(1):182-188.

[6] 毛海锋,赵巨峰,崔光茫,等.基于傅里叶叠层显微成像的LED阵列位置校正方法[J].光学学报,2021,41(4):103-113.

[7] 沙浩,刘阳哲,张永兵.基于深度学习的傅里叶叠层成像技术[J].激光与光电子学进展,2021,58(18):374-383.

[8] 胡跃辉,房国庆,方勇,等.基于凸优化的傅里叶叠层成像技术研究[J].应用光学, 2021, 42(4): 651-655.

(本文来源于《电子产品世界》杂志2023年8月期)

文章来源于:电子产品世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    ,…,Ri,…,Rn)。其中,R1表示参考标签i的信号强度。跟踪标签p和参考标签q的欧几里得距离(D):为: 通过比较D中各分量的值,找出跟踪标签p的k个最近邻居,称这种方法为k-最近邻算法。其他u......
    免个别数据直接决定决策结果。 1.1.2K-最近邻算法(KNN) 基本思路:选择未知样本一定范围内的K个样本,该K个样本中某一类型出现的次数最大,则未知样本判定为该类型。 举例说明: 如果K=3,绿色圆点的最近的3个邻居是2个红......
    一文详解无传感器PMSM 马达FOC控制算法详解;      PMSM应用 高效率和高可靠性 设计用于高性能伺服应用 可实现有1无位置编码器的运行方式 比ACIM体积更小、效率更高、重量更轻 采用......
    在数据预处理阶段通常会将节假日的数据设置为缺失值,然后在将节假日转换成月份、星期后,基于K 邻近算法完成缺失值插补,具体代码如图2 所示。 图2 基于K近邻算法的缺失值插补示例代码 2.2 关联分析 短期......
    讲明白讲透彻。 谐波算法详解(附实验数据) 各位Fluke 430系列产品的福粉们发现了吗?福禄克公司十年磨一剑,推出的新一代电能质量分析仪Fluke 1770系列,仪器界面新给出了一个谐波算法......
    。它通过寻找一个超平面来最大化不同类别之间的间隔,从而实现分类。SVM在高维空间和有限样本情况下表现出色,并且对于非线性问题也可以使用核函数进行扩展。 K近邻(KNN):K近邻是一种基于实例的学习算法......
    机器视觉边缘检测算法详解;边缘检测相关算法的步骤如下: 1、滤波:边缘检测算法主要是基于图像强度的一阶和二阶导数,但导数的计算对噪声很敏感,因此必须使用滤波器来改善与噪声有关的边缘检测器的性能。需要......
    三极管放大电路参数计算方法详解; 有时候去面试,偶尔会遇到一些考官喜欢考一些基础性的知识,其中三极管放大电路参数计算,是他们津津乐道的题目。在实际设计中,很少......
    特征可以是边缘、角点、纹理、颜色等。常用的特征提取方法包括SIFT、SURF、HOG等。 4. 特征匹配:将提取到的特征与预定义的模板或数据库中的特征进行匹配。匹配过程可以使用各种算法,如最近邻算法、支持......
    可以推荐一下网上一个非常不错的教程《SVPWM的原理及法则推导和控制算法详解第五修改版》,本文将如何实现SVPWM进行简单的介绍。 IQMATH TI的片子很香,控制方面,TI无疑是做的最好的方案之一,相对......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>