关于LED组件的结温和引脚温度的热测试系统

发布时间:2023-05-24  

LED热测试

为了在不牺牲可靠性的前提下获得最高的光学性能,必须了解特定应用中LED组件的热性能。1993年1月28日的技术备忘录“ LED灯的热特性”讨论了LED灯的基本热模型。本应用简介描述了Avago Technologies用于测量特定应用中安装的LED组件的结温和引脚温度的热测试系统。


通常,对LED组件进行热测试的目的是测量结温到环境的温升,以确保不超过最大结温。LED组件在高于最大结温的温度下的温度循环往往会导致金线键合产生过度的热应力,从而导致过早的灾难性故障。对于大多数Avago Technologies LED灯,最高结温为110°C。可以在产品数据表的“最大绝对额定值”中找到最大结温,也可以从“最大正向电流与温度曲线”推算得出。最大结温是在正向电流为零时,倾斜电流降额曲线的延伸与曲线的环境温度轴的交点。


基本的热测试程序是将特定系统内的LED组件的引脚热耦合,操作该系统并监视热平衡时的温度升高。另外,可以通过测量LED组件的正向电压变化来测量所选LED组件的结温。在这些测量中要格外小心,以确保尽可能重复特定的应用程序。这包括正确的系统机械方向,将系统安装在预期的外壳中以及以类似于正常操作的电压操作系统。

pIYBAGCchKqAcmaMAAF_hznbZ2g578.png

热测试系统

热测试系统的框图如图1所示。热测试系统使用几台测试设备,这些设备由个人计算机通过IEEE-488并行总线控制。测试系统中用于测量LED组件引脚温度的部分由Agilent 3421A数据采集系统和一系列T型热电偶组成。热电偶由Omega TT-T-30 SLE热电偶线组成,该电线被剥皮,扭绞在一起并焊接到被测引脚上。Agilent 3421A将热电偶线上产生的电压直接转换为温度测量值,然后通过IEEE-488总线将其发送到计算机控制器。


其余设备用于通过精确监视正向电压的变化来监视被测LED器件的结温。为了获得最佳结果,被测设备应在1.00 mA的恒定电流下表征温度范围内的正向电压。通常,变化约为-2.2 mV /°C,并且在工作温度范围内呈线性关系。表征后,可将LED组件直接焊接到被测系统中。为了获得最佳结果,被测设备应与被测系统的其余部分电气隔离被测设备由两个Keithly 224电流源驱动。一个电源用于以1.00 mA偏置电流驱动被测设备。第二个电源用于以可编程加热电流驱动被测设备。请注意,IBIAS加IHEAT应等于被测设备的应用预期驱动电流。对Agilent 8112A脉冲发生器进行了编程,以产生99.7%的占空比波形。


脉冲发生器的输出连接到高速数字开关,该数字开关在占空比的0.3%期间将加热电流源分流到地。脉冲发生器的触发输出用于触发Agilent 3437A数字电压表的采样。请注意,脉冲发生器触发输出的上升沿与0一致。3%的占空比波形,并且数字电压表是负沿触发的。

为了在正确的边沿上触发数字电压表,脉冲发生器的触发输出用TTL电平7406反相器反相。为了获得最高的分辨率,Agilent 3437A被配置为使用0.160 V的偏移量的Agilent 6033A可编程电源,在0.1000 V范围内测量被测设备的电压。


由于LED组件开始冷却在IHEAT电流源被分流后,Agilent 3437被配置为可以相当快地关闭,以尽快测量被测设备的电压。通常,应在分流IHEAT源后的50毫秒内进行此测量。脉冲发生器的触发输出由TTL电平7406反相器反相。


为了获得最高的分辨率,Agilent 3437A被配置为使用0.160 V的偏移量的Agilent 6033A可编程电源,在0.1000 V范围内测量被测设备的电压。由于LED组件开始冷却在IHEAT电流源被分流之后,Agilent 3437被配置为可以相当快地关闭,以尽快测量被测设备的电压。通常,应在分流IHEAT源后的50毫秒内进行此测量。


脉冲发生器的触发输出由TTL电平7406反相器反相。为了获得最高的分辨率,Agilent 3437A被配置为使用0.160 V的偏移量的Agilent 6033A可编程电源,在0.1000 V范围内测量被测设备的电压。由于LED组件开始冷却在IHEAT电流源被分流之后,Agilent 3437被配置为可以相当快地关闭,以尽快测量被测设备的电压。


通常,应在分流IHEAT源后的50毫秒内进行此测量。使用Agilent 6033A可编程电源作为大约1.6 V的偏置电源。由于LED组件开始相当快地冷却,因此Agilent 3437被配置为在IHEAT电流过后尽快测量被测设备的电压源被分流了。通常,应在分流IHEAT源后的50毫秒内进行此测量。


使用Agilent 6033A可编程电源作为大约1.6 V的偏置电源。由于LED组件开始相当快地冷却,因此Agilent 3437被配置为在IHEAT电流过后尽快测量被测设备的电压源被分流了。通常,应在分流IHEAT源后的50毫秒内进行此测量。


文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    方案框图 04基于SD8114便携式 酒精测试仪原理图 图5 基于SD8114的便携式酒精测试仪原理图 05程序流程图 传感器的预热是为了是降低和稳定传感器的零点,这个过程必须存在,另外......
    变压器容量测试仪原理_变压器容量测试仪功能;变压器容量测试仪原理 在发电机运行当中,内置的线圈运动需要通过内部的磁场运动,然后才可以通过固定线圈,最后才能够在点券中去感应相应的电势。在这......
    的提高了电源及恒流系统转换效率,解决了大尺寸直下式模组灯条电压高、大电流匹配问题,有效降低了恒流系统的热损耗,同时,极大地降低了大尺寸直下式电源及恒流系统的成本。 2.1 高效四通道电源及恒流系统原理 由于LED电视......
    电流相等,使在灯条电压不等的情况下也能实现均流,从而实现模组背光灯条对称或非对称设计。 图2a 3DR半周期分流技术原理 图2b 3DR通道倍增技术原理图 2.2 3DR通道倍增技术 当大屏及8K 电视背光模组灯条......
    精中校准传感器。负载电阻的推荐值在10K到47K之间。 二、酒精测试仪原理图 需要的组件列表: 酒精传感器 (MQ135) – 1个。 IC (ADC 0804) – 1个。 单片机 (AT89S51......
    取 SiC MOSFET 分立器件和功率模块损耗。图 18 显示分立式产品的原理图。所有参数都是为了反映应用中的所有特定情况和所有可能的电路级数。此外,还可以定制栅极驱动电压。   图 17.引入寄生效应以反映实际应用的分立式产品典型双脉冲测试仪原理图......
    极性笔测试仪的制作;步骤1:原理图和组件 在图片中,您可以看到原理图,构建它非常简单 您需要的组件是: 3 x 1K5(电阻器); 3 x LED(5毫米); 2个鳄鱼爪(黑色和红色); 3 x......
    Mini-LED扫描原理图 该系统采用N 行动态扫描方式设计,扫描方式的原理框图具体参见图3。LED 灯条的阳极供电VLED 由N个MOS 管控制,MOS 管的驱动由MCU 控制器模块端口提供。当MCU......
    地满足人们欣赏到音质优美的广播或音乐的需要。 1 设计方案 如图1所示,是立体声信号相位差电平差测试仪原理方框图。提出了一种立体声信号相位差电平差测试仪的设计方法。用C8051F020单片......
    液晶电视维修:LED灯光电路图原理分析; 之前家里的电视背光不亮了,有声音,认为灯条坏了,换上后还是不亮,当时没时间修电路板,就直接换了一块电源板,今天找到电源板,仔细看了一下,查了下资料,当时......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>