AT89C2051单片机对足浴器温度控制系统的设计

发布时间:2023-10-08  

足浴器的设计难点在于成本控制和温度控制系统的设计。近年来,开关电源技术的逐渐成熟,为小功率电源供电提供了一个高效率且低成本的方案,摒弃了传统的变压器降压、整流、三端稳压的低效率供电方式。而通过软件算法完善,例如PID算法的运用,可减少部分硬件开销,降低成本及系统复杂度,提高系统的稳定性。设计结合以上技术,着眼于成本最小化,性能最大化,实现了LED温度显示,双按键目标温度调节,高精度温控功能。由于主控芯片AT89C2051只有两组共16个IO引脚,2 kB的内存,因此需合理运用IO资源,程序设计简洁,合理分配内存空间。


1 系统结构设计

系统由供电、采样、按键、显示及单片机部分组成。

AT89C2051单片机对足浴器温度控制系统的设计

传感器负责采集温度值,传递给MCU,目标值由按键设定,MCU将采样值与目标值进行比较,经过时间PID算法处理,根据每段时间不同的温差值,计算出需要加热的时间,接着通过IO口控制继电器闭合与断开,使加热板工作,同时LED显示实时温度。


2 子模块的设计

(1)供电模块。供电部分采用开关电源技术,采用开关电源可以解决传统变压器所带来的问题,整个设计可变得简洁;供电效率高,且稳定;并可减少系统结构体积。由于传统的基极驱动方式会将普通NPN型开关晶体管的安全工作电压限定在BVceo,而采用射极驱动的方式,可将安全工作电压从Vceo扩大到Vcbo,由于BVcbo》BVceo,即可改善NPN型晶体管的安全工作范围,对市电为220 V的电网电压可用普通的NPN型功率开关管。该电路接通交流220 V经整流桥后,形成直流电压,R2为启动电阻,开关管用NPN管,输出电流及输出电压信号通过光隔U3反馈至射极驱动芯片U2,U2根据信号调节控制开关管的占空比,使得输出保持稳定。


(2)采样模块。采样部分采用DS18B20,其为美国Dallas生产的一线可编程数字温度传感器。它不同于传统的模拟温度传感器,其可产生对应温度的数字信号,与主控芯片只需单线通信,使得系统结构简单可靠。由于通信线为双向输入输出的OC门,因此需外加一个上拉电阻到VCC。DS18B20与MCU通信的时序要求严格,所以在采样过程中有必要关闭MCU的中断功能,防止外部干扰导致采集到错误数据。

(3)控制模块。控制部分南同态继电器(SSR)实现弱信号对强电的控制。由于固态继电器内部光耦合器的应用,使其控制信号所需的功率较低,且所需工作电压与TTL,CMOS等常用电平标准兼容,可实现直接连接。SSR工作时无机械动作,其具备了传统的“线圈-簧片触点式”继电器(MER)所没有的优点,即工作可靠性高,寿命长,此外,SSR还具有可承受比额定电流高约10倍的浪涌电压的特点。考虑到51系列单片机IO口驱动能力较弱,在原理图设计上需要外加PNP开关管,如图3所示。


(4)算法模块。热电阻丝具有过冲过冷现象,采用软件的PID算法可以弥补硬件部分的不足。PID算法是一种比例、积分、微分并联应用广泛的一种模糊控制算法。PID算法的数学模型可用下式表示


其中,Kp为比例系数;Ti为积分系数;Td为微分系数;e(t)为采样值与目标值的偏差。比例部分由式Kp*e(t)表示。若Kp越大,则过渡过程越快,也易产生振荡。因此Kp选择恰当,才能起到快速过渡且又稳定的效果。积分部分为。从表达式可知,只要存在偏差,则积分部分的控制作用就会不断增加,只有在偏差部分e(t)=0时,积分表达式才会为一个常数。其中积分时间Ti对积分控制的影响较大。Ti越大时,积分效果越弱,消除偏差需要的时间也越长。Ti越小,则积分效果较强,消除偏差需要时间也越短,但是容易在消除过程中产生振荡。

微分部分表达式为

微分部分的作用为抑制偏差变化。Td越大,则抑制能力较强;Td越小,则抑制能力较弱。显然微分部分对系统的稳定性有较大的作用。

由于计算机无法像模拟控制那样连续输出控制量,进行连续控制。所以上式需进行离散化处理。离散化的思路为:以T作为采样周期,将连续时间t分为k个采样周期,即t=kT,将t代入式(1)可得到离散PID表达式


采用增量式PID算法的优势在于可减少计算机的计算任务,并且增量式算法只取决于目前时刻,上一时刻,上上时刻的值,对起始参数不敏感。

3个系数的取值取决于实际经验,为达到较好的控制效果,因此在各温度区域由实验测取了最佳PID控制参数值。系统PID算法流程如图4所示。

由图4可知,若输出值为x,则2 s内的需加热时长为x×20 ms,不加热时长为(2 000-x·20)ms。


(5)PCB设计。本着强电和弱点,模拟信号与数字信号需要分开的原则。在PCB设计时采取以下措施:

1)由于采用开关电源供电,因此需注意将高频高压部分和低压直流部分隔离开。

2)系统对噪声较敏感,由于数字器件,尤其是MCU在开关动作时会引起电流变化,从而导致电压噪声,因此需在走线上用星型走线的拓扑结构,对敏感器件单独供电。

3)数字地需要进行大面积铺地处理,并且每个器件都要单独接一个0.01μF的高频退藕电容,在大规模数字器件上(例如MCU),需要外加一个47μF的电解电容抑制干扰。模拟部分和数字部分进行隔离,即在合适的地方与数字地单点连接。

3 试验结果

(1)设计要求。

1)从室温开始加热至40 ℃要求控制在30 min以内。

2)开始PID控制以后,水温的波动范围需要在目标温度±0.5℃以内。

(2)实验数据。

根据设计要求,目标温度定为47℃,从46.5℃开始根据PID算法控制,稳定后水温变化范围应在±0.5℃之内。


从室温下开始加热,水温上升平稳,每一分钟约上升0.7 ℃,如表1所示。


到达47℃后,水温被控制在46.5~47.5℃之间,如表2及图5所示。


4 结束语

此足浴器采用廉价的AT89C2051,并充分运用了其所有资源,两组IO引脚的其中11个引脚被用作LED数码管显示温度。剩下5个引脚分别作为继电器控制引脚、复位按键、DS18B20温度采集接口及两个温度调节按键。并用PID算法解决了热电阻过冲过冷的问题,减少了硬件需求,从而降低了成本。经实验证明,此控温系统运行稳定,且精度较高。


文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>