移植Linux-3.4.2内核到S3C2440

发布时间:2024-06-17  

一、BootLoader引导内核过程

    1、Bootloader的工作


    1.1、将内核读入内存

    1.2、保存内核启动参数到指定位置,内核启动时去这个位置解析参数

    1.3、启动内核、传入机器ID

二、内核的启动流程

内核首要目的是挂载根文件系统,启动应用程序,内核启动的过程大致为以下几步:

1.检查CPU和机器类型

2.进行堆栈、MMU等其他程序运行关键的东西进行初始化

3.打印内核信息

4.执行各种模块的初始化

5.挂接根文件系统

6.启动第一个init进程

对于ARM的处理器,内核第一个启动的文件是arc/arm/kernel下面的head.S文件

第一阶段:

首先截取部分head.S文件

ENTRY(stext)

 THUMB(    adr    r9, BSYM(1f)    )    @ Kernel is always entered in ARM.
 THUMB(    bx    r9        )    @ If this is a Thumb-2 kernel,
 THUMB(    .thumb            )    @ switch to Thumb now.
 THUMB(1:            )

    setmode    PSR_F_BIT | PSR_I_BIT | SVC_MODE, r9 @ ensure svc mode
                        @ and irqs disabled
    mrc    p15, 0, r9, c0, c0        @ get processor id
    bl    __lookup_processor_type        @ r5=procinfo r9=cpuid
    movs    r10, r5                @ invalid processor (r5=0)?
 THUMB( it    eq )        @ force fixup-able long branch encoding
    beq    __error_p            @ yes, error 'p'

#ifdef CONFIG_ARM_LPAE
    mrc    p15, 0, r3, c0, c1, 4        @ read ID_MMFR0
    and    r3, r3, #0xf            @ extract VMSA support
    cmp    r3, #5                @ long-descriptor translation table format?
 THUMB( it    lo )                @ force fixup-able long branch encoding
    blo    __error_p            @ only classic page table format
#endif

第一步,执行的是__lookup_processor_type,这个函数是检查处理器型号,它读取你的板子的CPU型号与内核支持的处理器进行比较看是否能够处理。

第二步,检查机器型号,它会读取你bootloader传进来的机器ID和他能够处 理的机器ID进行比较看是否能够处理。内核的ID号定义在arc/arm/tool/mach_types文件中MACH_TYPE_xxxx宏定义。内 核究竟就如何检查是否是它支持的机器的呢?实际上每个机器都会在/arc/arm/mach-xxxx/smdk-xxxx.c文件中有个描述特定机器的 数据结构,


MACHINE_START(S3C2440, "SMDK2440")
    /* Maintainer: Ben Dooks */
    .atag_offset    = 0x100,

    .init_irq    = s3c24xx_init_irq,
    .map_io        = smdk2440_map_io,
    .init_machine    = smdk2440_machine_init,
    .timer        = &s3c24xx_timer,
    .restart    = s3c244x_restart,
MACHINE_END

MACHINE_START和 MACHINE_END实际上被展开成一个结构体

#defineMACHINE_START(_type,_name)                 
staticconst struct machine_desc __mach_desc_##_type       
 __used                                             
 __attribute__((__section__(".arch.info.init")))= {     
      .nr          =MACH_TYPE_##_type,           
      .name            =_name, 
       
#defineMACHINE_END                           
}; 

于是上面的数据结构就被展开为

staticconst struct machine_desc __mach_desc_S3C2440     
 __used                                             
 __attribute__((__section__(".arch.info.init")))= {     
      .nr          =MACH_TYPE_S3C2440,           
      .name            =”SMDK2440”,}; 
.phys_io  = S3C2410_PA_UART, 
      .io_pg_offst    = (((u32)S3C24XX_VA_UART) >> 18) & 0xfffc, 
      .boot_params  = S3C2410_SDRAM_PA + 0x100, 
 
      .init_irq  =s3c24xx_init_irq, 
      .map_io          =smdk2440_map_io, 
      .init_machine  = smdk2440_machine_init, 
      .timer            =&s3c24xx_timer, 
 

每个机器都会有一个machine_desc__mach_desc结构,内核通过检查每个machine_desc__mach_desc的nr 号和bootloader传上来的ID进行比较,如果相同,内核就认为支持该机器,而且内核在后面的工作中会调用该机器的 machine_desc__mach_desc_结构中的方法进行一些初始化工作。

第三步,创建一级页表

第四步,在R13中保存__switch_data 这个函数的地址,在第四步使能mmu完成后会跳到该函数执行。

第五步,执行的是__enable_mmu,它是使能MMU,这个函数调用了__turn_mmu_on函数,让后在_turn_mmu_on在最 后将第三步赋给R13的值传给了PC指针 (mov    pc, r13),于是内核开始跳到__switch_data这个函数开始执行。

我们再来看arch/arm/kenel/head-common.S这个文件中的__switch_data函数

/*
 * The following fragment of code is executed with the MMU on in MMU mode,
 * and uses absolute addresses; this is not position independent.
 *
 *  r0  = cp#15 control register
 *  r1  = machine ID
 *  r2  = atags/dtb pointer
 *  r9  = processor ID
 */
    __INIT
__mmap_switched:
    adr    r3, __mmap_switched_data

    ldmia    r3!, {r4, r5, r6, r7}
    cmp    r4, r5                @ Copy data segment if needed
1:    cmpne    r5, r6
    ldrne    fp, [r4], #4
    strne    fp, [r5], #4
    bne    1b

    mov    fp, #0                @ Clear BSS (and zero fp)
1:    cmp    r6, r7
    strcc    fp, [r6],#4
    bcc    1b

 ARM(    ldmia    r3, {r4, r5, r6, r7, sp})
 THUMB(    ldmia    r3, {r4, r5, r6, r7}    )
 THUMB(    ldr    sp, [r3, #16]        )
    str    r9, [r4]            @ Save processor ID
    str    r1, [r5]            @ Save machine type
    str    r2, [r6]            @ Save atags pointer
    bic    r4, r0, #CR_A            @ Clear 'A' bit
    stmia    r7, {r0, r4}            @ Save control register values
    b    start_kernel
ENDPROC(__mmap_switched)

    .align    2
    .type    __mmap_switched_data, %object
__mmap_switched_data:
    .long    __data_loc            @ r4
    .long    _sdata                @ r5
    .long    __bss_start            @ r6
    .long    _end                @ r7
    .long    processor_id            @ r4
    .long    __machine_arch_type        @ r5
    .long    __atags_pointer            @ r6
    .long    cr_alignment            @ r7
    .long    init_thread_union + THREAD_START_SP @ sp
    .size    __mmap_switched_data, . - __mmap_switched_data

这个函数做的工作是,复制数据段清楚BBS段,设置堆在指针,然后保存处理器内核和机器内核等工作,最后跳到start_kernel函数。于是内核开始执行第二阶段。

第二阶段:

init/目录下的main.c的start_kernel函数


asmlinkage void __init start_kernel(void)

在start_kernel首先是打印内核信息,然后对bootloader传进来的一些参数进行处理,再接着执行各种各样的初始化,在这其中会初始化控制台。最后会调用rest_init();

我们再来看rest_init()函数


static noinline void __init_refok rest_init(void)

他启动了kernel_init这个函数,再来看kerne_init函数

static int __init kernel_init(void * unused)
{
    /*
    * Wait until kthreadd is all set-up.
    */
    wait_for_completion(&kthreadd_done);

    /* Now the scheduler is fully set up and can do blocking allocations */
    gfp_allowed_mask = __GFP_BITS_MASK;

    /*
    * init can allocate pages on any node
    */
    set_mems_allowed(node_states[N_HIGH_MEMORY]);
    /*
    * init can run on any cpu.
    */
    set_cpus_allowed_ptr(current, cpu_all_mask);

    cad_pid = task_pid(current);

    smp_prepare_cpus(setup_max_cpus);

    do_pre_smp_initcalls();
    lockup_detector_init();

    smp_init();
    sched_init_smp();

    do_basic_setup();

    /* Open the /dev/console on the rootfs, this should never fail */
    if (sys_open((const char __user *) "/dev/console", O_RDWR, 0) < 0)
        printk(KERN_WARNING "Warning: unable to open an initial console.n");

    (void) sys_dup(0);
    (void) sys_dup(0);
    /*
    * check if there is an early userspace init.  If yes, let it do all
    * the work
    */

    if (!ramdisk_execute_command)
        ramdisk_execute_command = "/init";

    if (sys_access((const char __user *) ramdisk_execute_command, 0) != 0) {
        ramdisk_execute_command = NULL;
        prepare_namespace();
    }

    /*
    * Ok, we have completed the initial bootup, and
    * we're essentially up and running. Get rid of the
    * initmem segments and start the user-mode stuff..
    */

文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>