STM32CUBEMX(13)--SPI,W25Q128外部Flash移植

发布时间:2024-06-14  

概述

SPI是串行外设接口(Serial Peripheral Interface)的缩写,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,越来越多的芯片集成了这种通信协议,比如 EEPROM,FLASH,实时时钟,AD转换器。 W25Q128 是一款SPI接口的Flash芯片,其存储空间为 128Mbit,相当于16M字节。W25Q128可以支持 SPI 的模式 0 和模式 3,也就是 CPOL=0/CPHA=0 和CPOL=1/CPHA=1 这两种模式。

视频教学

完整代码下载

https://download.csdn.net/download/qq_24312945/85002437

硬件准备

首先需要准备一个开发板,这里我准备的是NUCLEO-F030R8的开发板:

在这里插入图片描述

Flash就是淘宝上SPI接口的W25Q128模块。在这里插入图片描述

选择芯片型号

使用STM32CUBEMX选择芯片stm32f030r8,如下所示:在这里插入图片描述

配置时钟源

HSE与LSE分别为外部高速时钟和低速时钟,在本文中使用内置的时钟源,故都选择Disable选项,如下所示:在这里插入图片描述

配置时钟树

STM32F0的最高主频到48M,所以配置48即可:在这里插入图片描述

串口配置

本次实验使用的串口1进行串口通信,波特率配置为115200。在这里插入图片描述

开启DMA。在这里插入图片描述中断。在这里插入图片描述

SPI配置

本次实验使用的SPI与Flash通信,配置如下。 SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(单向传输时)。也是所有基于SPI的设备共有的,它们是MISO(主设备数据输入)、MOSI(主设备数据输出)、SCLK(时钟)、CS(片选)。 (1)MISO– Master Input Slave Output,主设备数据输入,从设备数据输出; (2)MOSI– Master Output Slave Input,主设备数据输出,从设备数据输入; (3)SCLK – Serial Clock,时钟信号,由主设备产生; (4)CS – Chip Select,从设备使能信号,由主设备控制。

接线方式

在这里插入图片描述

负责通讯的3根线了。通讯是通过数据交换完成的,这里先要知道SPI是串行通讯协议,也就是说数据是一位一位的传输的。这就是SCLK时钟线存在的原因,由SCLK提供时钟脉冲,SDI,SDO则基于此脉冲完成数据传输。数据输出通过 SDO线,数据在时钟上升沿或下降沿时改变,在紧接着的下降沿或上升沿被读取。完成一位数据传输,输入也使用同样原理。因此,至少需要8次时钟信号的改变(上沿和下沿为一次),才能完成8位数据的传输。 时钟信号线SCLK只能由主设备控制,从设备不能控制。同样,在一个基于SPI的设备中,至少有一个主设备。这样的传输方式有一个优点,在数据位的传输过程中可以暂停,也就是时钟的周期可以为不等宽,因为时钟线由主设备控制,当没有时钟跳变时,从设备不采集或传送数据。SPI还是一个数据交换协议:因为SPI的数据输入和输出线独立,所以允许同时完成数据的输入和输出。芯片集成的SPI串行同步时钟极性和相位可以通过寄存器配置,IO模拟的SPI串行同步时钟需要根据从设备支持的时钟极性和相位来通讯。 最后,SPI接口的一个缺点:没有指定的流控制,没有应答机制确认是否接收到数据。在这里插入图片描述其中,CS是从芯片是否被主芯片选中的控制信号,也就是说只有片选信号为预先规定的使能信号时(高电位或低电位),主芯片对此从芯片的操作才有效。这就使在同一条总线上连接多个SPI设备成为可能。 随便配置一个端口为CS片选,并且命名为CS。在这里插入图片描述

生成工程设置

注意在生产工程设置中不能出现中文,不然会报错。在这里插入图片描述

生成代码

在这里插入图片描述

配置keil

在这里插入图片描述

W25Q128的原理及应用

W25Q128将16M的容量分为256个块(Block),每个块大小为64K字节,每个块又分为16个扇区(Sector),每个扇区4K个字节。 W25Q128的最小擦除单位为一个扇区,也就是每次必须擦除4K个字节 。 芯片ID如下所示。

  • 0XEF13,表示芯片型号为W25Q80

  • 0XEF14,表示芯片型号为W25Q16

  • 0XEF15,表示芯片型号为W25Q32

  • 0XEF16,表示芯片型号为W25Q64

  • 0XEF17,表示芯片型号为W25Q128

驱动代码

W25Qx.c

/*********************************************************************************************************

*

* File                : ws_W25Qx.c

* Hardware Environment: 

* Build Environment   : RealView MDK-ARM  Version: 4.20

* Version             : V1.0

* By                  : 

*

*                                  (c) Copyright 2005-2011, WaveShare

*                                       http://www.waveshare.net

*                                          All Rights Reserved

*

*********************************************************************************************************/


#include "W25Qx.h"


/**

  * @brief  Initializes the W25Q128FV interface.

  * @retval None

  */

uint8_t BSP_W25Qx_Init(void)

    /* Reset W25Qxxx */

    BSP_W25Qx_Reset();


    return BSP_W25Qx_GetStatus();

}


/**

  * @brief  This function reset the W25Qx.

  * @retval None

  */

static void    BSP_W25Qx_Reset(void)

{

    uint8_t cmd[2] = {RESET_ENABLE_CMD,RESET_MEMORY_CMD};


    W25Qx_Enable();

    /* Send the reset command */

    HAL_SPI_Transmit(&hspi1, cmd, 2, W25Qx_TIMEOUT_VALUE);    

    W25Qx_Disable();


}


/**

  * @brief  Reads current status of the W25Q128FV.

  * @retval W25Q128FV memory status

  */

static uint8_t BSP_W25Qx_GetStatus(void)

{

    uint8_t cmd[] = {READ_STATUS_REG1_CMD};

    uint8_t status;


    W25Qx_Enable();

    /* Send the read status command */

    HAL_SPI_Transmit(&hspi1, cmd, 1, W25Qx_TIMEOUT_VALUE);    

    /* Reception of the data */

    HAL_SPI_Receive(&hspi1,&status, 1, W25Qx_TIMEOUT_VALUE);

    W25Qx_Disable();


    /* Check the value of the register */

  if((status & W25Q128FV_FSR_BUSY) != 0)

  {

    return W25Qx_BUSY;

  }

    else

    {

        return W25Qx_OK;

    }        

}


/**

  * @brief  This function send a Write Enable and wait it is effective.

  * @retval None

  */

uint8_t BSP_W25Qx_WriteEnable(void)

{

    uint8_t cmd[] = {WRITE_ENABLE_CMD};

    uint32_t tickstart = HAL_GetTick();


    /*Select the FLASH: Chip Select low */

    W25Qx_Enable();

    /* Send the read ID command */

    HAL_SPI_Transmit(&hspi1, cmd, 1, W25Qx_TIMEOUT_VALUE);    

    /*Deselect the FLASH: Chip Select high */

    W25Qx_Disable();


    /* Wait the end of Flash writing */

    while(BSP_W25Qx_GetStatus() == W25Qx_BUSY);

    {

        /* Check for the Timeout */

    if((HAL_GetTick() - tickstart) > W25Qx_TIMEOUT_VALUE)

    {        

            return W25Qx_TIMEOUT;

    }

    }


    return W25Qx_OK;

}


/**

  * @brief  Read Manufacture/Device ID.

    * @param  return value address

  * @retval None

  */

void BSP_W25Qx_Read_ID(uint8_t *ID)

{

    uint8_t cmd[4] = {READ_ID_CMD,0x00,0x00,0x00};


    W25Qx_Enable();

    /* Send the read ID command */

    HAL_SPI_Transmit(&hspi1, cmd, 4, W25Qx_TIMEOUT_VALUE);    

    /* Reception of the data */

    HAL_SPI_Receive(&hspi1,ID, 2, W25Qx_TIMEOUT_VALUE);

    W25Qx_Disable();


}


/**

  * @brief  Reads an amount of data from the QSPI memory.

  * @param  pData: Pointer to data to be read

  * @param  ReadAddr: Read start address

  * @param  Size: Size of data to read    

  * @retval QSPI memory status

  */

uint8_t BSP_W25Qx_Read(uint8_t* pData, uint32_t ReadAddr, uint32_t Size)

{

    uint8_t cmd[4];


    /* Configure the command */

    cmd[0] = READ_CMD;

    cmd[1] = (uint8_t)(ReadAddr >> 16);

    cmd[2] = (uint8_t)(ReadAddr >> 8);

    cmd[3] = (uint8_t)(ReadAddr);


    W25Qx_Enable();

    /* Send the read ID command */

    HAL_SPI_Transmit(&hspi1, cmd, 4, W25Qx_TIMEOUT_VALUE);    

    /* Reception of the data */

    if (HAL_SPI_Receive(&hspi1, pData,Size,W25Qx_TIMEOUT_VALUE) != HAL_OK)

  {

    return W25Qx_ERROR;

  }

    W25Qx_Disable();

    return W25Qx_OK;

}


/**

  * @brief  Writes an amount of data to the QSPI memory.

  * @param  pData: Pointer to data to be written

  * @param  WriteAddr: Write start address

  * @param  Size: Size of data to write,No more than 256byte.    

  * @retval QSPI memory status

  */

uint8_t BSP_W25Qx_Write(uint8_t* pData, uint32_t WriteAddr, uint32_t Size)

{

    uint8_t cmd[4];

    uint32_t end_addr, current_size, current_addr;

    uint32_t tickstart = HAL_GetTick();


    /* Calculation of the size between the write address and the end of the page */

  current_addr = 0;


  while (current_addr <= WriteAddr)

  {

    current_addr += W25Q128FV_PAGE_SIZE;

  }

  current_size = current_addr - WriteAddr;


  /* Check if the size of the data is less than the remaining place in the page */

  if (current_size > Size)

  {

    current_size = Size;

  }


  /* Initialize the adress variables */

  current_addr = WriteAddr;

  end_addr = WriteAddr + Size;


  /* Perform the write page by page */

  do

  {

        /* Configure the command */

        cmd[0] = PAGE_PROG_CMD;

        cmd[1] = (uint8_t)(current_addr >> 16);

        cmd[2] = (uint8_t)(current_addr >> 8);

        cmd[3] = (uint8_t)(current_addr);


        /* Enable write operations */

        BSP_W25Qx_WriteEnable();


        W25Qx_Enable();

    /* Send the command */

    if (HAL_SPI_Transmit(&hspi1,cmd, 4, W25Qx_TIMEOUT_VALUE) != HAL_OK)

    {

      return W25Qx_ERROR;

    }


    /* Transmission of the data */

    if (HAL_SPI_Transmit(&hspi1, pData,current_size, W25Qx_TIMEOUT_VALUE) != HAL_OK)

    {

      return W25Qx_ERROR;

    }

            W25Qx_Disable();

        /* Wait the end of Flash writing */

        while(BSP_W25Qx_GetStatus() == W25Qx_BUSY);

        {

            /* Check for the Timeout */

            if((HAL_GetTick() - tickstart) > W25Qx_TIMEOUT_VALUE)

            {        

                return W25Qx_TIMEOUT;

            }

        }


    /* Update the address and size variables for next page programming */

    current_addr += current_size;

    pData += current_size;

    current_size = ((current_addr + W25Q128FV_PAGE_SIZE) > end_addr) ? (end_addr - current_addr) : W25Q128FV_PAGE_SIZE;

  } while (current_addr < end_addr);



    return W25Qx_OK;

}


/**

  * @brief  Erases the specified block of the QSPI memory. 

  * @param  BlockAddress: Block address to erase  

  * @retval QSPI memory status

文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>