提高宽带隙功率器件故障分析的准确性

发布时间:2022-12-24  

预计 2018 年至 2050 年间,世界能源消耗将增长近 50%,原因是对可再生能源的需求增加、汽车工业系统 电气化,以及对电源管理应用中设备小型化和提高效率的需求不断增长。

随着半导体器件尺寸的缩小和复杂化,缺陷定位和变得更加关键,也更具挑战性。有了高密度互连、晶圆级堆叠、柔性电子和集成基板等结构元素,导致故障的缺陷就有了更多的隐藏空间。更糟糕的是,这些故障可能发生在设备封装阶段,导致产量下降和上市时间增加。

为了克服这一挑战,电气故障分析 (EFA) 和物理故障分析 (PFA) 的结合可以加深对故障机制的理解,并最终提高性能、可靠性和制造良率。当先进的 EFA 和 PFA 分析工具组合成完整的 EFA 到 PFA 工作流程时,这些工具使您能够更快、更准确地定位和表征宽带隙 (WBG) 材料(例如氮化镓 (GaN))中的细微电气问题和碳化硅 (SiC)。

在功率器件中使用新材料

今天,半导体行业正在超越硅,开发下一代电力设备: WBG电力设备。WBG电源设备非常适合用于要求很高的应用程序,比如需要高功耗的电动汽车或需要超长电池寿命的物联网设计。不幸的是,像氮化镓和碳化硅这样的材料可能会经历开发人员尚未看到的故障模式。因此,传统的故障分析方法可能无法胜任这个任务。这使得确定可能影响产量和可靠性的根本原因变得更加困难。

硅金属氧化硅半导体场效应晶体管(MOSFETs)提供了一个有用的例子。专为高功率应用设计,是大多数开关电源应用的首选设备。不幸的是,功率mosfet的性能已经达到了一个限制,因为新的要求在更小的形式因素封装中需要更高的电压和更快的频率。使用氮化镓或碳化硅重新设计这类设备,已经为新兴的高功率应用程序创建了可靠、紧凑和经济有效的解决方案。

电源MOSFET设备出现故障

当使用WBG材料制造时,功率模块具有垂直结构,将源和排水管放置在晶片的相反两侧,从而实现更高的电流和电压偏置。这与使用并行结构的CMOS设备不同。

在电气领域,漏极和源之间(IDSS)或栅极和源之间(IGSS)的漏电流是电源MOSFET中一般的故障类别。将故障分析集中于这些机制的能力提供了重要的见解,可用于改进生产方法、生产产量和未来的设计。

在物理实现中,铝(Al)和钛(Ti)或氮化钛(氮化钛)的金属层通常沉积在单个晶体管之上(图1)。这些不透明的图层可能会造成故障隔离方面的困难。例如,很难使用光子发射显微镜或光束诱导电阻变化(OBIRCH)扫描来准确地观察或定位缺陷。光子不能穿透金属层,而这些金属可能会吸收OBIRCH激光。

EFA-TO-PFA工作流

1. WBG电源设备,如电源MOSFET所提出的一系列挑战,为一种新的方法提供了强有力的理由。

2. 与电力设备制造商合作,开发并验证了一个由四部分组成的工作流程,它结合了EFA和PFA的优势,实现了电气和物理故障的快速定位、隔离和可视化。例如,使用赛默飞世尔科学公司的EFA和PFA解决方案,工作流程从EFA发展到PFA。该工作流程分为四个部分,包括:

1. 粗故障隔离:在电源MOSFET中,故障可能是由于IDSS或IGSS泄漏电流。在这一阶段,热科学精英和锁定热成像被用来检测热点及其通过厚厚的金属顶层的位置。由于金属层掩盖了确切的缺陷,需要额外的步骤来准确地确定故障及其确切位置。

2. 样品制备和去处理:为了准确地识别故障及其确切位置,需要在金属层中创建一个“窗口”来暴露单个晶体管。这是通过去处理来完成的,使用热科学太阳神5 PFIB,以去除铝和Ti/TiN的顶层。

3. 细故障隔离:然后使用热科学精英或亥伯龙II对去处理区域进行细故障隔离,采用一或两个尖端纳米探测,以扫描和确定精确的断层位置。

4. 成像和分析:在通过精细故障隔离确定确切的故障位置后,使用热科学直升机5双光束来观察和分析实际的物理缺陷。

结论

在同样的例子中,与客户一起工作,EFA-to-PFA工作流在有缺陷的MOSFET模具和晶圆上进行了测试和验证。

对于每个样品,EFA通过厚铝层检测到一个单一的热源。去处理可以快速、均匀地去除铝和Ti/TiN屏障,以进入感兴趣的区域(ROI)。对ROI进行扫描,以在纳米尺度上明确隔离故障。PFA数据允许客户成功地可视化和验证各自故障位置的缺陷。

在所有情况下,工作流都能以100%的成功率导航到并确定故障。


文章来源于:21IC    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    高效率30~512 MHz宽频带功率放大器设计;随着通信与对抗电子技术突飞猛进发展,提高通信速率、可通率、频带利用率至关重要,高宽带线性功率放大器衍生而出,而它对功率放大器的工作带宽、体积、线性......
    /s高速采样,16位高分辨率的A/D转换器准确捕捉输入波形。功率分析引擎能将周期检测/宽频带功率分析/谐波分析/波形分析/干扰分析这5个系统进行独立的数字处理。通过高速同时运算处理,可同......
    敏度极限小信号测量情况下,不确定度较大,需要足够多的平均次数,足够长的测量时间。 •所有类型功率计都可以准确测量信号的平均功率。 •只有二极管宽带功率探头才能测量峰值功率及其时域变化曲线。 频谱仪/接收......
    我公司载波频率设定值是2.5kHz,比通常的都低,目的是从使用安全着眼,但较普遍反映存在上述三点问题,通过增高载波频率值后,问题就解决了。 送电后按起动键RUN后没反应 (1)面板频率没设置; (2)电动机不动,出现......
    Fluke NORMA4000宽频带功率分析仪的功能特性及应用; Norma 高精度功率分析仪能够精确测量单相或三相电流和电压,并可计算功率和其它电参数。 对于任何波形、频率或相移,它都......
    难以实现全频段的平衡。 2.功放的持续输出功率值小于扬声器的持续输出功率才最容易导致扬声器的损坏。因为假如功放的持续输出功率100W,扬声器的持续输出功率200W。当连接系统后,一旦调节音量旋钮,输出功率......
    音箱(Passive Speaker)又称为“被动式音箱”。无源音箱即是我们通常采用的,内部不带功放电路的普通音箱。无源音箱虽不带放大器,但常常带有分频网络和阻抗补偿电路等。有源音箱通常标注了内置放大器的输出功率......
    计,就会了解检波器测量信号的特点。首先检波器是宽带功率测试,既如果检波器工作频率范围是10M至18G,其功率显示结果应为该频率范围内存在的所有信号功率和,而没有选频测试功能。由于这个原因,使用......
    测量。 N1912A P 系列双通道功率计特性: 30 MHz 视频带宽 以 100 Msa/s 的采样率进行单次触发实时捕获 关键测量参数:- 峰值、平均值、峰均比、上升时间、下降时间和脉冲宽度 22 种预......
    为了避免信号过大,造成频谱仪内部元件饱和甚至损坏,通常先将信号衰减,之后显示时再放大,屏幕上的功率值为实际的功率值,无需换算,单衰减量通常会显示给使用者参考。 低通滤波器或预选器 低通......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>