1 设备资源初始化
Linux-2..6.32.2 已经自带了完善的DM9000 网卡驱动驱动(源代码位置:linux-2.6.32.2/
drivers/net/dm9000.c),它也是一个平台设备,因此在目标平台初始化代码中,只要填写好相
应的结构表即可,具体步骤如下:
首先添加驱动所需的头文件dm9000.h:
#include
再定义DM9000 网卡设备的物理基地址,以便后面用到:
/* DM9000AEP 10/100 ethernet controller */
#define MACH_MINI2440_DM9K_BASE (S3C2410_CS4 + 0x300)
再填充该平台设备的资源设置,以便和DM9000 网卡驱动接口配合起来,如下
static struct resource mini2440_dm9k_resource[] = {
[0] = {
.start = MACH_MINI2440_DM9K_BASE,
.end = MACH_MINI2440_DM9K_BASE + 3,
.flags = IORESOURCE_MEM
},
[1] = {
.start = MACH_MINI2440_DM9K_BASE + 4,
.end = MACH_MINI2440_DM9K_BASE + 7,
.flags = IORESOURCE_MEM
},
[2] = {
.start = IRQ_EINT7,
.end = IRQ_EINT7,
.flags = IORESOURCE_IRQ | IORESOURCE_IRQ_HIGHEDGE,
}
};
/*
* * * The DM9000 has no eeprom, and it's MAC address is set by
* * * the bootloader before starting the kernel.
* * */
static struct dm9000_plat_data mini2440_dm9k_pdata = {
.flags = (DM9000_PLATF_16BITONLY | DM9000_PLATF_NO_EEPROM),
};
static struct platform_device mini2440_device_eth = {
.name = "dm9000",
.id = -1,
.num_resources = ARRAY_SIZE(mini2440_dm9k_resource),
.resource = mini2440_dm9k_resource,
.dev = {
.platform_data = &mini2440_dm9k_pdata,
},
};
;同时在mini2440 设备集中添加上面做好的网卡平台设备,如下红色部分
static struct platform_device *mini2440_devices[] __initdata = {
&s3c_device_usb,
&s3c_device_lcd,
&s3c_device_wdt,
&s3c_device_i2c0,
&s3c_device_iis,
&mini2440_device_eth,
&s3c_device_nand,
&mini2440_device_eth
};
这样,DM9000 平台设备的接口就填完了。
note:关于这个结构体struct resource说明下,这里定义了网卡的资源,查看板子的电路图,可以发现网卡是挂在
总线上的,而且地址处于bank4区域, 中断是用的外部中断7.
2 调整DM9000 所用的位宽寄存器
因为Linux-2.6.32.2 的DM9000 网卡驱动并不是专门为mini2440 准备的,所以还要在其源代码中做一些移植工作,如下步骤。
打开linux-2.6.32.2/ drivers/net/dm9000.c,头文件处添加2410 相关的配置定义,如下红色部分:
#include
#include
#include
#if defined(CONFIG_ARCH_S3C2410)
#include
#endif
#include "dm9000.h"
在dm9000 设备的初始化函数中添加如下红色部分,这里是配置DM9000 所用片选总线的时序,因为mini2440 目前只有一个通过总线外扩的设备,在此设备驱动中直接修改相关的寄存器配置会更加容易理解一些,当然这部分也可以放到mach-mini2440.c 中,你可以自行实验一下,在此不再赘述。
static int __init
dm9000_init(void)
{
#if defined(CONFIG_ARCH_S3C2410)
unsigned int oldval_bwscon = *(volatile unsigned int *)S3C2410_BWSCON;
unsigned int oldval_bankcon4 = *(volatile unsigned int *)S3C2410_BANKCON4;
*((volatile unsigned int *)S3C2410_BWSCON) =
(oldval_bwscon & ~(3<<16)) | S3C2410_BWSCON_DW4_16 |
S3C2410_BWSCON_WS4 | S3C2410_BWSCON_ST4;
*((volatile unsigned int *)S3C2410_BANKCON4) = 0x1f7c;
#endif
printk(KERN_INFO "%s Ethernet Driver, V%sn", CARDNAME, DRV_VERSION);
return platform_driver_register(&dm9000_driver);
}
3 关于MAC 地址
需要注意的是,本开发板所用的DM9000 网卡并没有外接EEPROM 用以存储MAC 地址,因此系统中的MAC 地址是一个“软”地址,也就是可以通过软件进行修改,可以随意改为其他值,在static int __devinit dm9000_probe(struct platform_device *pdev)函数中可以看出:/* try reading the node address from the attached EEPROM */;尝试从EEPROM 读取MAC 地址
for (i = 0; i < 6; i += 2)
dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
mac_src = "platform data";
memcpy(ndev->dev_addr, pdata->dev_addr, 6);
}
if (!is_valid_ether_addr(ndev->dev_addr)) {
/* try reading from mac */
mac_src = "chip";
for (i = 0; i < 6; i++)
ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
}
;使用“软”MAC 地址: 08:90:90:90:90:90
memcpy(ndev->dev_addr, "x08x90x90x90x90x90", 6);
if (!is_valid_ether_addr(ndev->dev_addr))
dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please ""set using ifconfign", ndev->name);
实际上到此为止DM9000 就已经移植结束了。
4 配置内核加入DM9000,并编译运行测试此时会带内核源代码目录,执行:
#make menuconfig
开始在内核中配置网卡驱动,依次选择如下菜单项
Device Drivers --->Network device support ---> Ethernet (10 or 100Mbit) --->
即可找到DM9000 的配置项,可以看到DM9000 已经被选中,这是因为Linux-2.6.32.2,默认的内核配置已经加入了DM9000 的支持
然后执行:
#make zImage
最后生成arch/arm/boot/zImage 文件,使用”k”命令把它烧写到开发板,并使用默认的文件系统启动,在命令行终端运行ifconfig 命令可以看到eth0的信息。
note:以上的移植过程主要是根据手册整理出来的。下面加入些个人的东西。关于加入的这几行
unsigned int oldval_bwscon = *(volatile unsigned int *)S3C2410_BWSCON;
unsigned int oldval_bankcon4 = *(volatile unsigned int *)S3C2410_BANKCON4;
*((volatile unsigned int *)S3C2410_BWSCON) =
(oldval_bwscon & ~(3<<16)) | S3C2410_BWSCON_DW4_16 |
S3C2410_BWSCON_WS4 | S3C2410_BWSCON_ST4;
*((volatile unsigned int *)S3C2410_BANKCON4) = 0x1f7c;
是什么意思呢?
S3C2410_BWSCON,S3C2410_BANKCON4这个其实就是BWSCON、BANKCON4的地址,前面对应的是映射过的地址,后面对应的是实际的物理地址,对于S3C2440,这个虚实地址映射关系其实很简单,就是加入了一个便宜。以S3C2410_BWSCON举个例子(或者说跟踪下这个的实现过程)
#define S3C2410_BWSCON S3C2410_MEMREG(0x0000)
#define S3C2410_MEMREG(x) (S3C24XX_VA_MEMCTRL + (x))
#define S3C24XX_VA_MEMCTRL S3C_VA_MEM
#define S3C_VA_MEM S3C_ADDR(0x00200000) /* memory control */
#define S3C_ADDR(x) (S3C_ADDR_BASE + (x))
#define S3C_ADDR_BASE (0xF4000000)
其实S3C2410_BWSCON也就是F4200000,其是地址0x48000000的一个映射,这个关系就是增加了一个偏移。这个大家应该基本都知道。
下面说,上面的程序干了啥,
里面出现的几个宏定义如下所示:
#define S3C2410_BWSCON_ST4 (1<<19)
#define S3C2410_BWSCON_WS4 (1<<18)
#define S3C2410_BWSCON_DW4_16 (1<<16)
下面是BWSCON控制寄存器的第16到19位
ST4 [19] Determines SRAM for using UB/LB for bank 4.
0 = Not using UB/LB (The pins are dedicated nWBE[3:0])
1 = Using UB/LB (The pins are dedicated nBE[3:0])
0
WS4 [18] Determines WAIT status for bank 4.
0 = WAIT disable 1 = WAIT enable
0
DW4 [17:16] Determine data bus width for bank 4.
00 = 8-bit 01 = 16-bit, 10 = 32-bit 11 = reserved
下面是BANK4CON寄存器各个位的含义。
Tacs [14:13] Address set-up time before nGCSn
00 = 0 clock 01 = 1 clock
10 = 2 clocks 11 = 4 clocks
00
Tcos [12:11] Chip selection set-up time before nOE
00 = 0 clock 01 = 1 clock
10 = 2 clocks 11 = 4 clocks
00
Tacc [10:8] Access cycle
000 = 1 clock 001 = 2 clocks
010 = 3 clocks 011 = 4 clocks
100 = 6 clocks 101 = 8 clocks
110 = 10 clocks 111 = 14 clocks
Note: When nWAIT signal is used, Tacc ³ 4 clocks.
111
Tcoh [7:6] Chip selection hold time after nOE
00 = 0 clock 01 = 1 clock
10 = 2 clocks 11 = 4 clocks
000
Tcah [5:4] Address hold time after nGCSn
00 = 0 clock 01 = 1 clock
10 = 2 clocks 11 = 4 clocks
00
Tacp [3:2] Page mode access cycle @ Page mode
00 = 2 clocks 01 = 3 clocks
10 = 4 clocks 11 = 6 clocks
00
PMC [1:0] Page mode configuration
00 = normal (1 data) 01 = 4 data
10 = 8 data 11 = 16 data
把上面要赋值的数据,转换成二进制位,一一对照看设定了什么功能。总的来说,就是设置时序,不具体说了。