机器视觉的图像特征提取技术分析

发布时间:2024-01-31  

区域和轮廓只包含对分割结果的原始描述,在实际应用中我们还需要从区域或轮廓中确定一个或多个特征量。这些确定的特征量被称为特征。

确定特征的过程被称为图像特征提取。  


一、概述

1.图像特征的分类

(1)图像的视觉特征

边缘、轮廓、形状、纹理和区域等。

(2)图像的统计特征

灰度直方图特征、矩特征,其中矩特征包括均值、方差、峰度及熵特征等。

(3)图像变换系数特征

傅立叶变换、离散余弦变换、小波变换等。

(4)图像代数特征

矩阵的奇异值

2.  特征提取与特征选择

(1)特征选择

从一组特征中挑选出一些最有效的特征,以达到降低特征空间维数的目的。

(2)特征提取

对原始特征进行变换得到的这些有利于分类、更本质、更少的新特征的过程。

二、兴趣点提取

1.什么是兴趣点

兴趣点是指图像信号在二维空间上发生变化的区域,通常情况下包括拐角点、交点和纹理等显著变化区域。

1ec9517c-79e5-11ee-939d-92fbcf53809c.png

2.兴趣点标定的方法

(1)基于轮廓线的方法

轮廓线具有曲率变化的特征,可归类为结点,端点等类型。如在图像中寻找脊和谷的方法对兴趣点进行标定。 

(2)基于图像强度的方法

信号的自相关函数检测特征点,灰度值的差大于某个门限时即认为该点是兴趣点。 

(3)基于参数模型的方法

使用高斯卷积模型对拐角进行识别,  使用最小化方法,使得模板与观测信号最佳匹配。

3.兴趣点的表达方法

(1)尺度不变特征变换(Scale-invariant feature transform,SIFT)

使用了128维的向量对兴趣点特征进行表达,该向量通过Lowe建立的码表形成。该方法可以做到缩放不变、亮度不变的特性。 

(2)可控滤波器和梯度不变方法

使用高斯滤波器的方法求图像的梯度,具有长度为13的维数。 

(3)区域矩不变特性

通过改变统计矩的组合,适用于图像的多种不变特性的应用。

(4)频域分析法

通过Gabor滤波器来捕捉图像在频率和方向上的细微变化,描述的维度很高。

三、Harris角点算法

1.概述

当滑动窗口处于一个兴趣点发生的地方,无论从哪个方向移动该窗口,都会发生图像强度(灰度值)的剧烈变化。

1ee91070-79e5-11ee-939d-92fbcf53809c.png

基于图像灰度的方法通过计算点的曲率及梯度来检测角点,避免了第一类方法存在的缺陷,此类方法主要有Moravec算子、Forstner算子、Harris算子、SUSAN算子等。

2.原理

图像窗口滑动后灰度值变化计算:

1f12cbe0-79e5-11ee-939d-92fbcf53809c.png

小距离窗口滑动近似计算:

1f2c3d00-79e5-11ee-939d-92fbcf53809c.png

首先采用Sobel算子计算出梯度Ix和Iy,再逐点计算其乘积,最后使用高斯窗对该乘积图像的所有像素点进行卷积即可。

3.MATLAB编程实现

img=imread('F:lena.png');imshow(img);img = rgb2gray(img);    
   %转换为灰度图像img =double(img);[m n]=size(img);            
   %获取图像尺寸tmp=zeros(m+2,n+2);  
     %创建空矩阵tmptmp(2:m+1,2:n+1)=img;  
 %将img赋值给tmp矩阵Ix=zeros(m+2,n+2);Iy=zeros(m+2,n+2);E=zeros(m+2,n+2);        
    %创建空矩阵Ix,Iy,EIx(:,2:n)=tmp(:,3:n+1)-tmp(:,1:n-1);
   %求横向梯度Iy(2:m,:)=tmp(3:m+1,:)-tmp(1:m-1,:); %求纵向梯度 Ix2=Ix(2:m+1,2:n+1).^2;            
      %求梯度方向乘积Iy2=Iy(2:m+1,2:n+1).^2;Ixy=Ix(2:m+1,2:n+1).*Iy(2:m+1,2:n+1);
  h=fspecial(‘gaussian’,[7 7],2);    
    %使用高斯核进行加权Ix2=filter2(h,Ix2);Iy2=filter2(h,Iy2);Ixy=filter2(h,Ixy);Rmax=0;R=zeros(m,n);for i=1:m  
 for j=1:n    
   M=[Ix2(i,j) Ixy(i,j);Ixy(i,j) Iy2(i,j)];    
   R(i,j)=det(M)-0.06*(trace(M))^2;          
   %计算角点量    
   if R(i,j)>Rmax      
     Rmax=R(i,j);                                  
%阈值判断    
   end  
 endend  
   re=zeros(m+2,n+2);tmp(2:m+1,2:n+1)=R;img_re=zeros(m+2,n+2);img_re(2:m+1,2:n+1)=img;for i=2:m+1  
 for j=2:n+1    
   if tmp(i,j)>0.02*Rmax &&...    
      tmp(i,j)>tmp(i-1,j-1) && tmp(i,j)>tmp(i-1,j) && tmp(i,j)>tmp(i-1,j+1) &&...        
  tmp(i,j)>tmp(i,j-1) && tmp(i,j)>tmp(i,j+1) &&...  
        tmp(i,j)>tmp(i+1,j-1) && tmp(i,j)>tmp(i+1,j) && tmp(i,j)>tmp(i+1,j+1)                
img_re(i,j)=255;                          
  %标记角点          
           end    
 endendimg_re=mat2gray(img_re(2:m+1,2:n+1));figure,imshow(img_re);  
  %恢复并显示图像

四、直线提取

1.Hough变换原理

在图像空间XY里,设所有过点(x,y)的直线都满足方程:

1f4532a6-79e5-11ee-939d-92fbcf53809c.png

式中,p为直线的斜率,q为直线的截距。也可以写成:

1f5c815e-79e5-11ee-939d-92fbcf53809c.png

式中表示参数空间PQ中过点(p,q)的一条直线。图像空间到参数空间之间的转换可以用图表示:

1f72e322-79e5-11ee-939d-92fbcf53809c.png

2.直线提取原理

开始时,置数组A为零,然后对每一个图像空间中的给定点,让θ取遍区间上所有可能的值,并根据直线公式算出对应的ρ,再根据和的值(设都已经取整)对A累加:

1f8c686a-79e5-11ee-939d-92fbcf53809c.png

对图像遍历后,上式的值就是在点(θ,ρ)处共线点的个数。值(θ,ρ)也给出了直线方程的参数,这样就得到了点所在的线。 

1fa4d33c-79e5-11ee-939d-92fbcf53809c.png

3.MATLAB编程实现

img = imread(rg.bmp');figure(1),subplot(1,2,1);imshow(img);  title('原始图像');img=rgb2gray(img);      
% 灰度图像subplot(1,2,2);imshow(img);  title('灰度图像'); thresh=[0.01,0.10];    
    %敏感度阈值sigma=3;          
              %定义高斯参数 f = edge(double(img),'canny',thresh,sigma);  %边缘检测figure(2),imshow(f);  title('canny 边缘检测'); % 检测函数;[H, theta, rho]= hough(f,'Theta', 20:0.1:75);  
  %0-1% H->累计数组 , thetaH:对应的θ,实际上H的大小就是Rho×Theta% Rho:H对应的ρ peak=houghpeaks(H,1);              
     %峰值提取hold on  %保留当前的图和特定的坐标轴属性,以便后续的绘图命令添加到现有的图表。lines=houghlines(f,theta,rho,peak);  
%得到线段信息 figure(3);imshow(f,[]);title('霍夫变换检测结果');hold on  ;for k=1:length(lines)        
  xy=[lines(k).point1;lines(k).point2];          
      plot(xy(:,1),xy(:,2),'LineWidth',4,'Color',[.6 .6 .6]);  end  


文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    MV.C机器视觉高光谱成像系统及其应用;高光谱成像技术是近些年来迅速发展起来的、一种全新的影像分析技术,它是集图像传感器、精密光学,精密机械、计算机信息处理技术于一体的综合性技术。在高......
    类市场带来低功耗的深度神经网络推理能力。     图示3-大联大诠鼎基于联咏科技和Hailo产品的后端智能图像分析方案的方块图   随着深度学习技术......
    接口,Hailo-8™ M.2能够达到前所未有的AI性能,为各类市场带来低功耗的深度神经网络推理能力。 图示3-大联大诠鼎基于联咏科技和Hailo产品的后端智能图像分析方案的方块图 随着深度学习技术......
    计算机视觉的5大核心任务是什么?;计算机视觉不仅是一门研究如何使机器理解和解释视觉世界的科学,更是一种追求让机器拥有与人类相近视觉处理能力的技术。 它通过分析数字图像和视频,使得机器能够识别、追踪......
    ™ M.2能够达到前所未有的AI性能,为各类市场带来低功耗的深度神经网络推理能力。 图示3-大联大诠鼎基于联咏科技和Hailo产品的后端智能图像分析方案的方块图 随着深度学习技术......
    割算法分割质量得评价成为一项颇具研究意义的课题。有关图像分割评价的方法已有少数的初步探讨,但目前仍未有很好的归纳和整理。这不仅和图像分割技术的研究应用现状不相称,也不利于图像分割技术的发展。   图像分割是图像分析的第一步,是计......
    过程共同形成了一个系统的整体周期,可以连续性的运作。在视频图像处理技术范围内最主要的就是包括了图像的压缩技术和视频图像的处理技术等。 目前,市场上主流的视频图像处理技术包括:智能分析处理,视频透雾增透技术......
    识别解决的是what,那么,物体定位解决的则是where的问题。利用计算视觉技术找到图像中某一目标物体在图像中的位置,即定位。 目标物体的定位对于计算机视觉在安防、自动驾驶等领域的应用有着至关重要的意义。 05 图像分......
    具备自主感知和智能决策的能力。 此外,嵌入式系统可以与机器学习和深度学习技术相结合,用于训练和部署机器视觉模型。例如,在嵌入式设备上进行图像分类、目标检测、人脸识别等任务,可以通过训练和优化深度学习模型,并在嵌入式系统中进行部署,实现实时的智能图像处理和分析......
    机器视觉图像分割的方法有哪些?;图像分割(image segmentation)是指把图像分割成各个具有特性的区域并提取出感兴趣目标的技术和过程。 现有的图像分割方法主要分以下几类:基于......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>