由于关乎车辆的性能和成本,汽车零部件的集成化、标准化一直是业界努力的方向,要实现快速的产品迭代和平台化应用,标准化和集成化都是两大利器。所谓集成化,就是对原本分立的系统进行集成,从而使得汽车相关组件数量精简,体积变小,质量变轻,效率提升。比如比亚迪基于“e 平台”打造的电动汽车,正是通过高度集成、一体控制,实现了整车重量的减轻、整车布局的优化,能耗效率的提升和可靠性的提高,最终加速推动电动汽车的普及。
高压充配电总成三合一一般包括 车载充电机 (OBC) 、 高压配电盒(PDU) 以及 转换器"> DC-DC转换器 。有些充配电总成还会在三合一的基础之上再集成双向交流逆变式电机控制器( VTOG ),也就是俗称的四合一。
一.车载充电机的组成和原理
车载充电机 内部可分为主电路、控制电路、线束及标准件三部分。主电路前端将交流电转换为恒定电压的直流电,主电路后端为DC/DC变换器,将前端转出的直流高压电变换为合适的电压及电流供给动力蓄电池。
车载充电机控制电路具有控制场效应管开关,它与BMS之间进行通信,监测充电机工作状态以及与充电桩握手等。 线束及标准件用于主电路与控制电路的连接,固定元器件及电路板。 车载充电机工作原理如图所示。
转化原理: 220Vac经过EMI 滤波电路 滤波,通过一次AC-DC转换器整流,将AC整流为DC,后经PFC功率因数校准电路进行升压,再送往开关和变压器变频升压,经过LLC过第二次整流滤波后输出高压直流给动力电池充电 (第一次220Vac整流到310Vdc,电压不够,要升压转化两次)
二.高压配电盒
电动汽车高压配电箱( PDU )又称为高压配电盒,是高压系统分配单元。电动汽车具有高电压和大电流的特点,通常配备300V以上的高压系统,工作电可达200A以上,可能危及人身安全和高压零部件的使用安全性。因此,在设计和规划高压动力系统时,不仅要充分满足整车动力驱动要求,还要确保汽车运行安全、驾乘人员安全和汽车运行环境安全。
新能源汽车通常在大功率的电力环境下运行,有的电压高达700V以上,电流高达400A,对高压配电系统的设计及零部件的选用提出了巨大的挑战。 高压电源通过高压电缆直接进入高压控制盒后根据各车型系统的需要分配到系统高压电气部件,并且需要保证整个高压系统及各高压电器设备的安全性、绝缘性、电磁干扰屏蔽性等要求。
三.DC-DC转换器
1.功能
(1)驱动直流电机在小功率直流电机驱动的转向、制动等辅助系统中,一般直接采用DC/DC电源变换器供电。
(2)向低压设备供电向电动汽车中的各种低压设备如车灯等供电。
(3)给低压蓄电池充电在电动汽车中,需要高压电源通过降压型 DC/DC转换器给低压蓄电池充电,将动力电池的400V/800V的高压直流电转化为12V低压直流电给低压蓄电池充电。
(4)不同电源之间的特性匹配以燃料电池电动汽车为例,一般采用燃料电池组和动力电池的混合动力系统结构。在能量混合型系统中,采用升压型DC/DC 转换器;在功率混合型系统中,采用双向型DC/DC 转换器。
2.工作原理
3.工作原理简图
4.转换器内部
5.工作条件及判断
工作条件:
(1)高压输入范围为DC 290~420V
(2)低压输入范围为DC 9~14V
判断DC/DC是否工作的方法
第一步,保证整车线束正常连接的情况下,上电前使用万用表测量 铅 酸蓄电池端电压,并记录
第二步,打开到“on档”整车上电,继续读取万用表数值,查看变化情况,如 果数值在13.8~14V之间,判断为DC工作
四.双向交流逆变式电机控制器
该控制器为电压型逆变器,利用IGBT将直流电转化成交流电,其主要功能是通过收集挡位信号、加速踏板信号、制动踏板信号等来控制电机,根据不同工况控制电机的正反转、功率、扭矩、转速等,即控制电机的前进、倒退、维持车辆的正常运转。此外,还具备充电控制功能,能进行交直流转换,双向充放电控制,它主要负责充电功率大于3.3KW的交流电(含单相和三相交流电)转换为高压直流电为动力蓄电池充电。该控制器总成分为上、中、下3个单元,上、下层为电机控制单元和充电控制单元,中间层为水道冷却单元。