-
传统汽车供应链呈现垂直链式结构,按照上下游之间不同的责任分工进行资源匹配; 传统汽车供应链是一个ToB的逐层传递价值结构,最终由主机厂通过4S店将产品传达给用户。
-
主机厂将构建融合、扁平的自身生态体系,角色边界模糊,中间环节减少,供应商与主机厂形成共生共赢关系; 新型汽车供应生态以用户的体验和需求作为驱动力,价值周期延长。
-
智能手机市场由增量转为存量,全球智能手机出货量连续三年下跌,智能手机市场缓慢步入瓶颈期。智能手机芯片市场的高增速与高利润难以长期维持。 对于消费电子芯片巨头而言,亟需寻找新的市场机会点以拓展利润空间。智能座舱、智能驾驶的高算力需求带来新的市场机遇。
-
芯片是一个依赖高研发投入,通过大规模生产以实现规模效应,摊平成本的产业;因此在市场初期掌握更多竞争优势的厂商在实现量产上车后将通过规模效应获得成本优势。 消费电子芯片巨头具备充足的资金优势,可通过并购优秀的初创公司,持续提升AI计算芯片优势,补全汽车领域芯片能力与资源。
-
智能汽车车载计算芯片市场处于发展初期,可供选择产品较少,存在巨大潜在市场,新兴芯片科技公司凭借算法与IP优势切入; -
芯片国产化是智能汽车关键部件供应链自主可控的关键一环; 缺芯危机让主机厂意识到芯片供应链韧性的重要性,汽车芯片迎来国产替代窗口期。
-
相比于传统汽车芯片厂商,新兴芯片科技公司在AI算法与计算上更具优势,具备更加全栈的产品与技术能力支持,可提供“芯片+算法参考+工具链”的产品服务模式; 新兴芯片科技公司在汽车产业供应生态中离主机厂的位置更近,将主机厂、Tier1与芯片厂商之间传统的链条式关系变为三角式关系。
-
智能汽车时代,软件与芯片的价值被放大。主机厂希望通过布局汽车芯片以掌握更多研发主导权,并通过提高软件与芯片结合效率,提高自身产品与技术优势; 国际关系的日益复杂以及疫情带来的缺芯危机,使得主机厂进一步关注供应链韧性,主机厂布局汽车芯片产业可使其在供应链中更具话语权。
-
自研方式:自研芯片可充分结合主机厂算法需求特点,充分挖掘芯片能力,但需要一定技术积累与大量资源投入,难度较大;在软件算法上具备领先优势的新势力车企有更多自研意愿; -
合资方式:与成熟芯片厂商合资建立芯片公司,共同探索智能汽车计算芯片,但合资产品在对外供应商存在难题,较难形成规模效应; -
投资:以产业投资方式完成汽车芯片布局,与新兴芯片科技公司建立更深层次的关系; 合作:在新兴芯片科技公司发展初期与其建立战略合作关系,敢于做“第一个吃螃蟹的人”。
-
消费电子芯片巨头阵营:具备深厚的芯片技术储备,资金雄厚,可支撑起对先进支撑和高算力芯片的高昂研发投入;具备良好的软件生态;车载计算芯片技术领先,在中高端车型与新势力车型市场中有广泛应用; -
新兴芯片科技公司阵营:在AI算法与计算上有独到的产品优势,相比传统厂商能力更为全栈,可提供“芯片+算法参考+技术支持”的产品服务;在车规级与大规模量产能力上仍待提升,产品主要应用于自主品牌车型; -
传统汽车芯片厂商阵营:在传统汽车芯片领域近乎呈垄断地位,产品线齐全,与Tier1、主机厂有深厚关系积累;在满足车规级要求方面有深厚技术能力储备,但在AI计算芯片上优势不足;产品多用于中低端车型; 主机厂自研/合资芯片厂商阵营:自研/合资芯片可与主机厂自身算法实现深度结合,充分挖掘芯片计算能力,但产品开放性较差,且由于竞争关系,合资产片更多满足主机厂自身需求,难以实现对外供应,发挥规模效应。
呈按域划分的烟囱状软硬件结合开发与采购模式;单个软件功能单一且简单,软件只属于分布式ECU工程开发中的一部分,软件成本未被单独定价,被认为是硬件系统成本的一部分。
-
主机厂负责整车架构与产品定义以及来自Tier1的软硬件耦合的零部件系统集成、应用工作;对最终整车产品负责;不与芯片厂商直接沟通。 -
Tier1根据车企需求,定制生产含传统传感器、黑盒子式ECU、执行器等零部件,依靠强大的整合能力、标准化产品生产能力,具有很强话语权、定价权。 芯片厂商在汽车供应链中一般处于Tier2甚至更靠后的位置,较少直接与主机厂进行合作,一般面向上游Tier1提供芯片硬件与相关开发软件服务支持。
负责软硬件的集成,以黑匣子形式向主机厂交付软件,对Tier2的采购具有较高的决策权,物料成本表对主机厂呈低透明度,具有高于一般供应商的利润水平。
-
面对智能汽车时代来自多方的竞争压力,作为全球最大的汽车一级供应商,博世正加快自身智能化软硬件技术与产品的建设。 2021年1月,博世正式成立智能驾驶与控制事业部,新事业部将统一为未来汽车架构提供软件密集型系统,博世每年将投资30亿欧元用于汽车软件技术研发。
主机厂内部的开发与采购链条分为:软件设计与集成、硬件设计与集成、硬件制造三部分;软件开发与采购组织形式呈现跨域集中式,软件功能越来越复杂;软件预算独立于车型项目。
-
主机厂负责整车架构与定义,并主导除了基础计算平台和基础软件以外的大部分应用层算法与软件的开发与集成工作;直接参与到如计算芯片、基础软件、功能应用等部件的选择与采购工作。 -
主机厂通过面向服务的SOA架构,要求Tier1开放产品的底层代码和数据算法,对车内各域进行统一部署,Tier1逐渐被“削弱”,Tier1负责向主机厂提供基础硬件平台基础软件以及工具链等开发支持服务。 在新型合作关系中,芯片厂商与主机厂建立更加紧密的协作协作关系,主机厂在产品定义与设计环节直接跳过Tier1,与芯片厂商合作;芯片厂商在产业生态中地位提升,议价能力增强。
为主机厂提供:硬件平台、基础软件以及工具链等开发支持服务;对Tier2的采购决策权降低,物料成本表对主机厂的透明度提升,利润回归至一般供应商水平。
-
新格局中,Tier1被完全跳过么? -
在主机厂、Tier与主机厂新型的合作关系中,主机厂开始在产品定义与设计初期跳过Tier1,与芯片厂商直接沟通技术与产品细节,甚至直接签订协议,在量产设计环节再引入Tier1负责硬件平台的验证与制造; 芯片产业中规模效应极为明显,因此在智能汽车芯片新市场格局中,Tier1在芯片采购环节中短时间内并不会被完全跳过,Tier1仍然是最大的芯片采购商,采购成本低于主机厂自采。
-
新格局之下,Tier1还有哪些优势? -
在传统功能汽车时代,面对数量繁多的分布式ECU,Tier1构建了强大的系统集成能力和嵌入式的软件开发能力,这些能力在智能汽车时代仍然重要且是主机厂与新兴科技公司所欠缺的; 得益于与主机厂多年来深厚的合作经验,Tier1具备优秀的软硬件质量严格把控能力,产品化的工程能力以及大批量生产、按时交付、稳定可靠的供应链管理能力。
-
国际Tier1阵营:国际Tier1阵营具备强大的系统集成能力与深厚的客户资源优势,基于在硬件平台上的技术优势积累,不断建设软件平台,构建全栈能力。 -
本土Tier1阵营:本土Tier1在产品性价比与服务能力上具备一定优势,联合芯片厂商、软件服务商建立合作生态圈将有助于本土Tier1阵营构建全栈服务能力,满足主机厂差异化、定制化需求。 -
基础软件厂商阵营:基础软件厂商多专注于智能汽车操作系统、中间件等基础软件技术平台的打造,致力于打造全栈式的、可解耦的产品解决方案,面向主机厂、Tier1提供可选择的差异化服务。 主机厂阵营:车载计算平台是整车智能化的关键载体,主机厂希望更多掌握底层硬件平台的主导权,但实现车载计算平台的完全自研难度较大,大多数主机厂仍将结合Tier1及软件服务商的能力。
-
全栈自研解决方案与优秀的产品力:华为在智能驾驶、智能座舱计算平台均具备从底层芯片、中间件、操作系统的全栈自研能力,且其解决方案在同类产品中具备领先优势,具备高性能、高安全以及快速响应的特征。 软硬件生态建设与资源投入:围绕MDC、Harmony智能座舱与数字平台,投入大量资金与专家资源支持,构建合作生态圈;对生态合作伙伴提供赋能培训、商业项目拓展、标准合作、联合解决方案与营销等支持。
-
在智能汽车产业布局上,BAT均采取云边端全栈布局战略,在云端依托大数据、人工智能、云计算优势,构建自动驾驶、车联网云服务平台; 在边端聚焦智慧交通,以项目总包角色,联合产业合作伙伴提供整体解决方案;在车端聚焦智能驾驶与智能座舱软件解决方案,赋能主机厂。
-
2017-2021无锡,完成全球首个城市开放道路车路协同项目部署工作; -
2019上海,在东海大桥部署路侧单元V2X设备,助力上汽集团5G+L4智能驾驶重卡落地; 2019湖北,联合东风汽车集团,在武汉开展5G+V2X自动驾驶示范应用。
-
边缘计算车联网解决方案:利用MEC技术将车联网业务下沉到边缘节点,驾驶员终端、车辆和交通基础设施就近接入,满足车联网对时延和可靠性的高要求,实现融合感知、车路协同。云边协同,提升交通的安全性、通行效率和驾驶体验; 2020年6月,在雄安新区携手中兴通讯成功打造中国首个城市级应用边缘计算节点,即绿色智能交通先行示范区车路协同,是云网融合在车联网场景的首次成功实践。
-
车联网云平台:全局算法,实现路径动态规划,边缘云平台处理后的有用信息回传至车联网云平台; MEC边缘业务平台:采集的车辆信息在MEC边缘平台进行预处理,支持车辆在移动过程中,通过MEC边缘业务平台实现切换和动态数据同步,如紧急制动、红绿灯信息控制、交汇路口VIP车辆优先通行。
-
如何提炼市场真实需求,保证产品定义与设计具备足够前瞻性? -
车载计算芯片从设计到量产上车需要3.5~5.5年实践,而智能驾驶与智能座舱的算法软件在持续迭代升级中,当前客户需求并不一定反映未来的真实需求。 -
产品硬件架构确定之后,如何满足持续进化的算法需求? -
车载计算芯片在上车之后需满足产品5~10年的使用需求。如何满足汽车产品生命周期内OTA软件与算法升级带来的持续上涨的算力需求,是芯片厂商面临的一大难题。 -
新兴芯片科技公司如何在市场竞争中赢得更多主机厂青睐? 新兴芯片科技公司面临来自消费电子芯片巨头、传统汽车芯片厂商、主机厂自研芯片厂商多方竞争压力。新兴芯片科技公司如何提升自身服务力满足市场差异化需求。
-
芯片厂商将与主机厂建立更多前端沟通:汽车芯片厂商在产业合作中,将与主机厂建立更多前端沟通,综合多家主机厂信息,挖掘市场真实需求,提高产品定义与设计前瞻性,充分挖掘产品生命周期价值。 -
软硬结合能力将成为关键技术优势:芯片厂商将构建自身对于算法与软件的深厚理解,才能在芯片架构设计时更好地匹配算法需求,在芯片硬件架构固定后,芯片厂商需有良好的底层软件能力,以调整适应需求。 优秀的服务能力将成为关键竞争优势:随着合作量产上车的主机厂数量增加,芯片厂商需提升芯片产品在软硬件层面的兼容性与适配性;面对主机厂的差异化需求,服务与执行能力将成为芯片厂商的关键竞争力。
-
传统汽车芯片种类与数量繁多:当前主机厂管理的芯片料号超过1000种,在如此大的芯片种类前提下,难以保证供应链的稳定可靠。 通过电子电气架构的集中化发展及单芯片性能与集成度的提升,可将所需芯片种类减少至少一个数量级:
-
电子电气架构的集中化发展; -
单芯片性能与集成度的提升; 减少芯片种类数量,降低供应链的管理难度。
-
传统汽车芯片供应链环节冗长且供需关系不透明:当前汽车产业的缺芯问题可看为是典型的供应链牛鞭效应,即从主机厂到供应商再到芯片厂商的需求扭曲效应。 疫情初期主机厂的需求减少,预测在漫长的芯片供应链传递中被逐级扩大;疫情好转后,供应链在短期内调整产量的灵活性有限,造成全球汽车产业缺芯局面。
-
主机厂直接参与芯片采购甚至芯片设计研发,缩短供应链条; -
电子元器件采购平台兴起,供应链数字化减少信息不对称; -
减少对单一供应商的依赖,保障供应链安全; 提高汽车芯片供应链的韧性。
-
国家政策层面将汽车芯片列为关键技术,加大产业支持力度; -
加大芯片关键技术相关专业对口人才的培养与产学研合作; -
提高芯片设计能力,加速补生产制造侧的工具设备能力; 提高汽车芯片供应链的自主可控程度。
-
计算集中化有效降低芯片供应管理难度:计算的集中化发展将有效推动硬件平台与软件平台的一致化发展,降低所需芯片种类与数量,降低供应链管理难度。 -
供应链透明度与韧性将得到提升:新型供应生态下,供应环节将缩短,数字化采购平台将提升供应链透明度,主机厂也将减少对单一供应商的以来以提高供应链韧性。 国产芯片厂商更具性价比与服务优势:国内的汽车芯片企业具有天然的渠道优势和较高的性价比,且在供应能力和实时响应方面更加灵活高效,更能契合本土车厂的需求。
文章来源于:电子工程世界 原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。