芯片迭代在加大可靠性风险

发布时间:2023-12-04  

对电子供应链中的所有利益相关者而言,他们都很依赖自己买卖的复杂元器件的可靠性。但随着芯片技术的发展,对芯片质量问题的测试变得更具挑战性。例如,苹果公司的A17 Pro SoC拥有190亿个晶体管和一个6核CPU,其中两个高性能内核采用了台积电的新型3纳米技术。

半导体制造商在直接或通过授权渠道销售组件时要保证自己芯片的性能。

10纳米以下的处理器出现了更多质量问题,其中一些问题很难通过常规测试检测出来。制造商和原始设备制造商(OEM)在最终用户投诉后才发现问题,这迫使他们不得不更换整个装置并推迟生产。

一些故障仍然是个谜。比如,2015年,来自多伦多大学的一些计算机科学家在IEEE Spectrum杂志发布报告称,超过4%的谷歌云计算服务器,受到了之前任何测试都未检测到的错误,这导致服务器意外停止。

随后,AMD在2020年发布了一份报告表示,有证据表明,当时最先进芯片的可靠性,比上一代同类产品低了约5.5倍。越来越多人认为,芯片每迭代一次,面临的问题会成倍出现,该现象在最先进工艺的芯片上尤为明显。

2021年,Facebook和谷歌的研究人员都发表了研究报告,描述了不易查明原因的计算机硬件故障。他们认为,问题不在于软件,而在于计算机硬件。

谷歌工程师Peter Hochschild在“2021年操作系统热点话题(HotOS)”会议上发布的一段视频中说:“生产团队抱怨机器破坏数据的情况越来越多。”

Hochschild和他的团队推测,“性能和密度正在超过芯片的可靠性,复杂性正在超过测试方法。”

摩尔定律和功耗

1974 年,一位美国工程师和发明家Robert H. Dennardl联合撰写了一篇论文,该论文指出,随着晶体管体积变小,其功率密度保持不变,因此功耗与面积成正比。

摩尔定律指出,晶体管数量每两年翻一番,而芯片尺寸可以保持不变,因此登纳德缩放定律指出,给定面积的总芯片功率在不同工艺世代之间保持不变。

英特尔、AMD、台积电等公司,一直在利用这两条定律来制造速度更快、体积更小的处理器,从而促成了当前的移动计算生态系统。目前的笔记本电脑、平板电脑,尤其是智能手机,都是通过在相同的面积上封装更多的晶体管来实现,在相同性能下需要更少的功耗。

遗憾的是,对于半导体行业和OEM来说,登纳德缩放定律已不再有效。奥格斯堡应用技术大学的Christian Märtin教授说:“纳德缩放定律是在1974年形成的,并一直沿用了30多年(2005年左右)。从2005年开始,大于65纳米的器件结构的漏电流可以忽略不计。”

根据内存制造商Rambus的说法,“业界普遍认为,登纳德缩放定律在2005-2007年间崩溃了。正如Märtin所证实的那样,由于阈值和工作电压无法再缩放,无法再保持一代又一代产品的功率包络线不变,并同时实现潜在的性能提升。”

事实上,正如Märtin所展示的那样,登纳德缩放定律发展到后期,在相同芯片面积下,每一代芯片的功耗会增加2倍,而芯片计算资源的使用率则会下降。在芯片面积一定的情况下,能源效率每一代只能提高40%。

产量下降,功耗上升

摩尔第二定律又称洛克定律(以Arthur Rock命名),指出半导体制造厂的投资成本也会随着时间的推移呈指数增长。

随着密度和复杂性的提高,生产可用芯片的成本也在增加。一些半导体制造商正花费数十亿美元购买新设备,尤其是ASML的光刻设备。

此外,由于登纳德缩放定律已经失效,芯片设计人员必须创建更多专用内核来补偿更高的功耗。这对于云计算和人工智能应用尤为重要,因为电源使用效率(PUE)是衡量效率和可持续性的最终标准。

今年9月,华为推出了全新旗舰智能手机Mate 60 Pro,据称该机搭载了中芯国际自主研发的全新5G麒麟9000s处理器。最初,华为并未公布该设备的完整规格,但拆解显示该设备采用了7纳米技术。一直到最近,大家还认为没有一家中国制造商,拥有制造这种先进芯片的设备。

而路透社报道称:“一些研究机构预测,中芯国际的7纳米工艺良品率低于50%,而行业标准为90%或更高,低良品率将把出货量限制在200-400万片左右,不足以让华为重新夺回昔日智能手机市场的主导地位。”

需要新工具来测试复杂的芯片

在不懈追求创新的过程中,半导体行业已经达到了前所未有的里程碑,芯片内核已达5纳米和3纳米。然而,这一令人瞩目的进步也带来了令人担忧的副作用——芯片故障率也在不断攀升。

在这种情况下,对尖端半导体进行彻底和持续的可靠性测试的必要性比以往任何时候都更明显。从过去的失败中吸取的教训,例如谷歌、AMD、Facebook 和其他公司所强调的失败,强调了应对这些挑战的紧迫性。

本文翻译自国际电子商情姊妹平台EPSNews,原文标题:

文章来源于:国际电子商情    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    比此前工程机128万的跑分还有一定差距。具体来看,vivo X90平均跑分为1194521,虽然接近120万,但相比此前工程机128万的跑分还有一定差距。 最近几年各大科技厂商在手机芯片处理器行业......
    作有助于发展高通的高端智能手机和 PC 芯片。 如果希望重新进入服务器芯片行业,高通需要与潜在客户重新建立信任。过去几年,服务器行业也发生了巨大的变化。亚马逊已经自主研发了服务器处理器,但仍然继续从其他供应商那里采购芯片......
    工技术和半导体集成电路制造技术制作而成的惯性传感器,由质量块、弹性元件、敏感元件等机械结构件(传感器芯片)和信号处理电路(ASIC)等部分组成。 2、中国MEMS惯性传感器行业......
    穿戴设备市场的发展提供了良好的基础。其次是技术层面,得益于芯片、传感器、电池等核心技术的不断优化,我们可以使用超低功耗兼具高性能的芯片处理器搭配数个图像传感器,大大延长设备的续航时间。 苹果Vision Pro中所......
    线每月近4万片,300mm生产线每月5.5万片。另外,今年1月瑞萨也被传出将部分由台积电代工的半导体改为自产,临时启用那珂工厂的12英寸产线,主要涉及40nm制程工艺的MCU产品。具体来看,12英寸生产线主要由单芯片处理......
    李廷伟:恩智浦在汽车新时代的创新与合作;在全球技术飞速发展的今天,恩智浦半导体公司,作为行业的领军企业,正在积极拥抱这一新时代的变革。恩智浦全球资深副总裁、大中华区主席李廷伟分享了公司在汽车行业新......
    李廷伟:恩智浦在汽车新时代的创新与合作;在全球技术飞速发展的今天,恩智浦半导体公司,作为行业的领军企业,正在积极拥抱这一新时代的变革。恩智浦全球资深副总裁、大中华区主席李廷伟分享了公司在汽车行业新......
    品更容易进入市场被消费者所接受,更具有竞争力。1.2 ARM 微处理器的应用领域及特点1.2.1 ARM 微处理器的应用领域到目前为止,ARM 微处理器及技术的应用几乎已经深入到各个领域:1、工业......
    之一为中央计算单元(图示中央域控制器),所采用的正是恩智浦S32G3芯片处理器。 恩智浦S32G3处理器赋能星灵架构(图片来源:广汽埃安) 广汽持续加大投入,升级架构的背后,包含......
    心计算单元组成,其中之一为中央计算单元(图示中央域控制器),所采用的正是恩智浦S32G3芯片处理器。 恩智浦S32G3处理器赋能星灵架构(图片来源:广汽埃安) 广汽持续加大投入,升级架构的背后,包含......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>