基于LM386音频功率放大电路的调频电台收听原理

发布时间:2023-08-03  

为什么普通的音频功放在某些情况下可以直接收听到调频电台的声音?它是如何将空间传播的高频电磁波放大检波之后,还原出声音的呢?


要理解这一点,需要稍微比在大学课本中介绍的运算放大器(Operational  Amplifier:OPAMP)的特性更深入了解一下它的工作情况,并在此基础上了解运算放大器的“电磁干扰一抑制比”(Electromagnetic Interference Ejection Ratio:EMIRR)的概念和防治。


这一点之所以重要,是因为现在电路工作环境中该高频电磁干扰逐渐增多,例如设备中的高频开关电源、WiFi、Bluetooth、ZIgbee等无线通信模块等。在设计电子信号调理电路时如果不防治EMI,就有可能让外部的高频电磁干扰侵扰到电路中,甚至是电路无法工作。


LM386基本特性

LM386是一款音频功率放大电路,有很宽的工作电压范围(4~18V),提供大约500mW的输出功率,电压增益在20~200之间。


1、LM386内部结构

下图是从TI公司产生的LM386内部等效电路图。它包括有前级差分输入、电压放大以及功率推挽输出。由于内部已经有电阻负反馈回路,所以工作在单电压下,输出级会自动偏置在部分。

8dc79eb6-1ec4-11ee-962d-dac502259ad0.jpg

TI公司的LM386内部等效电路图 LM386的工作原理与普通运放相似。为了提高电路在深度负反馈下的工作的稳定性,在电压放大级的三极管的集电极和基极之间会存在寄生的电容,当频率增高是降低电路的增益,提高电路工作增益稳定裕量。


2. LM386的频率特性

为了研究LM386受到高频信号的影响,需要了解它的频率特性,即随着输入信号的频谱不同,运放的幅度增益和相位变化。下面通过一个简单的实际电路,实测LM386的频率特性。 将LM386配置成增益为200的放大器的形式,输入的信号从PIN3通过电解电容10耦合到电路中来。

8df3d29c-1ec4-11ee-962d-dac502259ad0.jpg

LM386实验电路 在实验电路中,输入10mV左右的信号。频率从1kHz增加到2MHz,输出信号的幅度随着频率的变化而出现变化。在下图中还记录了LM386输出管脚的直流分量的变化情况,当频率高的时候输出点的直流分量也出现变化。

8e148eb0-1ec4-11ee-962d-dac502259ad0.png

通过扫频获得LM386的幅频特性和在不同频率下输出偏移量 上面的幅频曲线显示LM386是一个低通滤波器的特性。输出增益下降到原来的的时候,所对应的频率为LM386的截止频率。     LM386的低通截止频率大约为:。 频率不仅影响输出信号的幅值增益,同时还会引起输出信号的相位移动。下面显示了输入输出波形之间关系随着频率不同而变化。

8e377e84-1ec4-11ee-962d-dac502259ad0.gif

在不同频率下LM386的输入,输出波形与输入波形之间的关系 将输出信号的幅度以及它与输入信号之间的相位差绘制出来,可以清楚看到频率引起的变化。随着信号频率的增加,输出信号的幅值下降,相位在逐步落后。

8ee07e58-1ec4-11ee-962d-dac502259ad0.png

不同频率下输出的幅值以及相位差  3. 为什么高频信号会引起LM386输出直流偏置电压变化? 从前LM386的内部机构和基本的频率特性可以看出,当输入信号的频率比较低的时候,LM386的电压放大倍数比较大,输入输出的相位差小,IC内部负反馈电阻网络使得输入差分放大级的输入信号与反馈信号基本上呈现平衡,抵消后实际作用在输入三极管基极-发射极上的交变信号量比较小,此时三极管工作在线性放大状态。 当输入信号的频率增加之后,超过截止频率(550kHz)之后,LM386的电压增益下降,使得反馈信号逐渐低于输入信号。同时由于反馈信号的相位逐渐落后于输入信号,也进一步加大了输入信号和反馈信号的差别。最终提高了作用在输入级三极管基极-发射极上的交流电压分量。当该交流电压分量超过一定幅值,由于三极管基极导通呈现非线性整流作用,因此就会产生附加的整流电压。该电压经过放大之后,就逐步影响到输出级的直流电压,从而改变LM386的直流偏置。 下面可以通过几组不同频率的信号,逐步改变它们的幅值,观察LM386直流分量的变化情况。


通带内的频率:1kHz, 50kHz

过渡带的频率:250kHz

阻带内的频率:1000kHz

不同频率输入信号对LM386直流偏置的影响

1. 频率为1kHz正弦信号

设置输入信号为1kHz的正弦波,输入LM386。信号的有效值幅度从0.01逐步升高到1.00V,对应的LM386的输出以及输出直流偏移量变化如下:

8f03f55e-1ec4-11ee-962d-dac502259ad0.png

输入信号幅值增大与输出信号幅值、输出直流偏移量之间的关系

8f311cbe-1ec4-11ee-962d-dac502259ad0.gif

LM386输出波形的变化

2. 频率为50kHz正弦信号

在输入信号的频率为50KHz下,输出信号的有效值和直流偏移量随着输入信号的有效值从0.01V变化到1.0V的过程中对应的变化情况。

8f7c6cdc-1ec4-11ee-962d-dac502259ad0.png

在50kHz下LM386的输出信号幅度和直流偏移量随着输入信号的幅值增加变化的情况

8f9535e6-1ec4-11ee-962d-dac502259ad0.gif

在50kHz下输出波形随着输入信号有效值幅值从0.01V增加到1V的变化情况

3. 频率为50kHz正弦信号

94058162-1ec4-11ee-962d-dac502259ad0.png

在250kHz下,输入信号增大所引起的输出信号和输出偏移量之间的关系

942bce12-1ec4-11ee-962d-dac502259ad0.gif

在250kHz频率下LM386输出波形变化情况

4. 频率为1MHz的正弦波信号

946d59ea-1ec4-11ee-962d-dac502259ad0.png

在1MHz下,LM386输出幅值和直流偏移量之间的关系

94985906-1ec4-11ee-962d-dac502259ad0.gif

在1MHz频率下,LM386的输出信号随着输入信号有效值从0.01增加到1.00V的变化情况

5. 不同频率信号结果对比

在不同的频率下,输出的信号在开始的时候都是随着输入信号的幅值增加而上升。但是随着频率超出了LM386的频率范围。输出的信号的幅值在高于一定值之后,反而下降。下降的 原因通过下面的输出直流分量的变化可以看出来。

94c18cae-1ec4-11ee-962d-dac502259ad0.png

在四种不同的频率下运放的输出是输入信号的幅度之间的关系 直流分量的变化如下图所示。对于高出LM386截止频率之外的信号,输出直流偏质量随着输入信号的幅值增加而下降。从而影响了输出信号的的动态范围,这也使得输出信号中的交流分量降低了。  

94f45878-1ec4-11ee-962d-dac502259ad0.png

对比在四种频率下,随着输入信号的幅值增加所引起的输出直流偏移量的变化 从上面的实验可以看出,频率的高低的确是影响LM386直流偏移量的主要原因。同时输入信号的幅值也会影响到输出直流偏移量。 当输入信号的有效值低于0.1V的时候,LM386直流偏移量变化不大,这说明初级的整流效果还不明显。当输入信号的幅值增大,输入级的整流效果增加,就带动输出直流分量下降。

6. 两组扫频实验结果

第一组 :输入有效值为0.1Vrms下图对比了在输入相同的情况下,随着频率的增加输出直流量的变化。

950ee8b4-1ec4-11ee-962d-dac502259ad0.png

输入0.1Vrms下不同频率对应的输出和直流偏置量的变化

9522d1d0-1ec4-11ee-962d-dac502259ad0.gif

输入0.1Vrms下,不同频率对应的LM386直立偏移量的变化 第二组:在0.2Vrms输入频谱对输出的影响 设置输入信号的有效值为0.2V,测试输入信号的频率对于输出信号的幅值、输出直流偏质量的影响。

954a1e70-1ec4-11ee-962d-dac502259ad0.png

输入信号的频谱对输出信号和直流偏置的影响

95681a92-1ec4-11ee-962d-dac502259ad0.gif

在输入0.2Vrms的情况下,信号的频率对输出和偏移量的影响 将前面两个实验的直流偏移量随着频率的增加而变化的情况绘制在一起。 可以看到当输入信号的幅值增大时,频率的增加会使得直流偏移量的变化更加明显。

96189f0c-1ec4-11ee-962d-dac502259ad0.png

对比在两种输入点好的电压下,输入频谱对于运放直流偏移量的影响 通过前面实验数据说明,当输入信号幅值增大,频率增大时,LM386的前级整流效果越明显。 前面同学制作的LM386功放如果可以收到当地调频电台的节目,根据前面分析,这需要有两个条件: 条件1:在LM386的输入端口进入的高频电磁波的幅值足够大,就会引起LM386输出整流后的低频信号; 条件2:在输入回路中还应该有一个谐振回路,它的中心点与附近调频电台的频率很接近。这一方面会增加接收信号的幅值,另一方面利用谐振特性曲线,将接收到的调频信号的幅值也进行改变,进而有后级的LM386整流、放大输出相应的调制音频信号。

运算放大器的EMIRR

从前面分析来看,施加在运算放大器输入级的高频信号,并不会因为运放的低通作用而被消除。相反,当该信号幅值大于一定程度之后,它会被运放前级整流,进而影响运放的直流工作点。  

9636d6e8-1ec4-11ee-962d-dac502259ad0.png

输入高频电磁干扰会引起输出直流电压变化 虽然从运放的输入端、电源端和输出端进入的高频干扰信号都会影响到输出直流偏置电压,但从输入端进入的干扰产生的影响最大。 将输入高频干扰信号的幅值与它所引起的运放输出直流的变化之比称为运放的电磁干扰抑制比(EMIRR)。 将运放配置成电压跟随器的形式,衡量正输入端的高频干扰信号与它所引起的运放输出直流变化的比值定义为:EMIRR IN+。

9661b91c-1ec4-11ee-962d-dac502259ad0.png

EMIRR和EMIRRIN+ 具体的计算公式如下:这个数值运放的数据手册中会给出,它表明了运放对外部电磁干扰抑制的能力。如果电路工作电磁环境恶劣,在设计初期就需要选择EMIRR高的运放设计电路。 如果自己选择的运放EMIRR数值不高?而又恰恰工作在高频干扰复杂的环境中,那该怎么办? 此时就需要在电路系统的电磁防护上多下些功夫了。通过增加电路输入输出高频滤波电路,对敏感电路区域增加有效屏蔽,对高功率部分增加隔离等。毕竟谁也不希望自己的电路随时能够收听本地调频电台的广播内容。 

文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    索尼黑科技--CXA1129N收音芯片; 本文引用地址: 之前在《SONY SRF-S84电路分析与打磨》一文中简单分析了这枚神奇的芯片。神奇‬是因为它是专为超低压随身听设计的纯模拟收音芯片,支持中波调频......
    多点触控电容TP;自带GPS支持第三方地图应用,内置BT,FM;具有联通3G/2G网络和WIFI网络,便于随时随地上网,更新地图,下载Android等应用,使用科大讯飞语音技术实现语音导航,拨打电话,电台调频......
    功能不断完善,种类不断增加,因此它的应用领域也不断扩大,本文我们将单片机与FM 收音机芯片综合运用起来,设计了一款可以实现调频、存台的FM 收音机系统。 1   系统方案 1.1 系统总体设计 该系......
    FM远程编码器/解码器电路;在 "家用电器的射频遥控电路 "一文中,我们已经学习了如何使用射频通信控制家用电器。现在让我们看看如何使用 RF600E 和 RF600D 集成电路设计调频......
    用于传输音频信号的FM电路分享;FM电路在无线通信中占有重要地位。该电路使用单个晶体管发射无噪声FM信号,距离约50-300米。来自发射器的发射信号可以通过具有FM功能的简单接收器电路接收。 调频......
    用于调频收音机的有源天线放大器电路图;这是用于调频收音机的有源天线放大器的电路图。只需少量零件,您就可以构建这款值得信赖的调频放大器来增强无线电发射机的信号。该电路仅适用于 1 个 UHF/VHF......
    如何使用RIGOL的仪器进行FM信号生成和分析;本应用笔记涉及使用RIGOL的仪器进行FM信号生成和分析。将使用任意波形发生器来产生信号,并使用频谱波形分析仪来显示,调制和分析结果波形。 调频......
    使用两个晶体管构建的迷你FM发射器电路;这是一款迷你FM发射器,使用 2 个晶体管构建和供电,由 Tony van Roon 设计。这个小型发射器很容易构建,它的传输可以在任何常见的 FM 收音......
    ,AFG-2100系列还提供AM/FM/FSK调频、扫描以及计频器功能。在参数设置上采用全数字化的操作设计,3.5〞的三色LCD显示,可清楚的显示设置的参数内容。全系列配备USB Device接口,用户......
    了杂散信号的辐射,在美国ISM波段内能够获得八个独立的发送信道。为扩频BPSK、ASK和OOK提供输入,通过直接调制VCO实现调频(FM)。这些器件适合与外部差分天线配合使用。 应用......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>