基于S3C4510B微处理器和操作系统实现网络通信工程的编写设计

发布时间:2023-02-07  

Linux是一种很受欢迎的操作系统,与UNIX系统兼容,开放源代码。它原本被设计为桌面系统,现在广泛应用于嵌入式设备。uCLinux正是在这种氛围下产生的。在uCLinux这个英文单词中,u表示Micro,是“小”的意思;C表示Control,是“控制”的意思,所以uCLinux就是Micro-Control-Linux,字面上的理解就是“针对微控制领域而设计的Linux系统”。它也是针对无MMU(内存管理单元模块)的微处理器设计的操作系统。S3C4510B就是属于该类的微处理器。


Samsung公司的S3C4510B是基于以太网应用系统高性价比16/32位RISC微控制器,内含一个由ARM公司设计16/32位ARM7TDMI RISC处理器核。ARM7TDMI为低功耗、高性能的16/32核,最适合用于对价格及功耗敏感的应用场合。除了ARM7TDMI核以外,S3C4510B还有许多重要的片内外围功能模块,其中就有1个以太网控制器,用于S3C4510B系统与其它设备的网络通信工程。在S3C4510B的网络控制平台上移植了uCLinux操作系统,并在这个嵌入式平台上实现网络控制的各项功能。本文的叙述的网络通信工程就是其中最主要的功能。


1 基于S3C4510B以太网电路的设计思路与实现

作为一款优秀的网络控制器,基于S3C4510B的系统若没有以太网接口,其应用价值就会大打折扣,因此,就整个系统而言,以太网接口电路应是必不可少的,但同时也是相对较复杂的。从硬件的角度看,以太网接口电路主要由MAC控制器和物理层接口(Physical Layer,PHY)两大部分构成。

基于S3C4510B微处理器和操作系统实现网络通信工程的编写设计

S3C4510B内嵌一个以太网控制器,支持媒体独立接口(Media Independent Interface,MII)和带缓冲DMA接口(Buffered DMA Interface,BDI),可在半双工或全双工模式下提供情报0M/100Mbps的以太网接入。在半双工模式下,控制器支持CSMA/CD协议,在全双工模式下支持IEEE802.3MAC控制层协议。因此,S3C4510B内部实际上已包含了以太网MAC控制,但并未提供物理层接口,故需外接一片物理层芯片,以提供以太网的接入通道。


常用的单口10M/100Mbps高速以太网物理层接口器件主要有RTL8201、DM9161等,均提供MII接口和传统7线制网络接口,可方便地与S3C4510B接口。以太网物理层接口器件主要功能一般包括:物理编码子层、物理媒体附件、双绞线物理媒体子层、10BASE-TX编码/解码器和双绞线媒体访问单元等。


在该设计中,使用DP9161作为以太网的物理层接口。DM9161是一款低功耗、高性能的CMOS芯片,支持10M和100M的以太网传输,它起编码、译码输入和输出数据的作用。它与S3C4510B的引脚连线如图图1所示。


由于S3C4510B片内已民用有带MII接口的MAC控制器,而DM9161也提供了MII接口,各种信号的定义也很明确,因此DM9161与S3C4510B的连接时序衔接,可以达到很好的网络信号传递的目的。图2为DM9161在本系统中的实际应用电路(图中右下方的1、2、3以及14、15、16分别与网络隔离变压器相应引脚相连)。


S3C4510B的MAC控制器可通过MDC/MDIO管理接口控制多达斡尔1个DM9161,每个DM9161应有不同的PHY地址(可从00001B~11111B)。当系统复位时,DM9161锁存引脚9、10、12、13、15的初始状态作为与S3C4510B管理接口通信工程的PHY地址;但该地址不能设为00000B,否则DM9161进入掉电模式。


信号的发送和接收端应通过网络隔离变压器和RJ45接口接入传输媒体,实际应用电路如图书室所示。


2 Linux下的网络编程协议分析

Linux下的TCP/IP网络协议栈的各层之间是通过一系列互相连接层的软件来实现Internet地址族的,结构层次如图4所示。


其中BSD socket层由专门用来处理BSD socket的通用套接字管理软件来处理,它由INET socket层来支持。INET socket为基于IP的协议TCP和UDP管理传输端点。UDP(用户数据报协议)是一个无连接协议,而TCP(传输控制协议)是一个可靠的端对端协议。传输UDP包的时候,Linux不知道也不关心它们是否安全到达了目的地。TCP则不同。在TCP连接的两端都需要加上一个编号,以保证传输的数据被正确接收。在IP层,实现了Internet协议代码,这些代码要给传输的数据加上一个IP头,并且知道如何把传入的IP包送给TCP或者UDP协议。在IP层以下,就是网络设备来支持所有的Linux网络工作,如PLIP、SLIP和以太网。


3 uClinux环境下的socket编程

网络的socket数据b传输是一种特殊的I/O,socket也是一种文件描述符,也具有一个类似文件的函数调用socket()。该函数返回一个整型的socket描述符,随后的连接建立、数据传输等操作都是通过该socket函数实现的。常用的socket类型有两种:流式socket和数据报式socket。两者的区别在于:前者对应于TCP服务,后者对应于UDP服务。


3.1 uCLinux中socket编程中用到的函数

(1) socket函数

为了执行I/O,一个进程必须做的第一件事情就是调用socket函数,指定期望的通信协议类型(使用IPv4的TCP、使用IPv6的UDP、Unix域字节流协议等),其函数结构如下:int socket(int family,int type,int protocol);

/*返回:非负描述字—成功,-1—出错*/

代码中的family指明协议族。套接口的类型type是某个常值。一般来说,函数socket的参数protocol主设置为0,socket函数成功时返回一个小的非负整数值。为了得到这个数值,我们指定协议族(IPv4IP、v6或Unix)和套接口类型(字节流、数据报或原始套接口)。

(2)connect函数

TCP客户用connect函数来建立一个与TCP服务器的连接。

Int connect(int sockfd,const struct sockaddr* servaddr,socklen_t addrlen);/*返回:0—成功,-1—出错*/

Sockfd由socket函数返回数值,第二、第三个参数分别是一个批晌套接口地址结构的指针和该结构的大小。套接口叶址结构必须含有服务器的IP地址和端口号。

(3)bind函数

函数bind给套接口分配一个本地协议地址。对于网际协议,协议地址是非颠倒2位IPv4地址16位的TCP或UDP端口号的组合。

Int bind(int sockfd,const struct sockaddr* myaddr,socklen_t addrlen);/*返回:0—成功,-1—出错*/

第二个参数量个指向特定于协议地址结构的指针,第三个参数是该地址结构的长度。对于TCP,调用函数bind可以指定一个端口,指定一个IP地址。可以两者都指定,也可以一个也不指定。

(4)listen函数

函数listen仅被除数TCP服务器调用。它做两件事件事情,当函数socket创建一个套接口时,被假设为一个主动套接口。也就是说,它是一个将调用connect发起连接的客户套接口,函数listen将未连接的套接口转换成被动套接口,指示内核应接受指向此套接口的连接请求。根据TCP状态转换调用函数listen导致套接口从CLOSED状态转换到LISEN状态。函数的第二个参数规定了内核为此套接口排队的最大连接个数。

Int listen(int sockfd,int backlog);

/*返回:0—成功,-1—出错*/

一般来说,此函数应在调用函数socket和bind之后,调用函数accept之前调用。

(5)accept函数

accept函数由TCP服务器调用,从已完成连接队列头返回下一个已完成连接。若已完成连接队列为空,则进程睡眠。(假定套接口噗缺省的阻塞方式)

int accept(int sockfd,struct sockaddr*cliaddr,socklen_t*addrlen);/*返回非负数值—OK,-1—出错*/

参数cliaddr和addrlen用来返回连接对方进程(客户)的协议地址。Addrlen是结果参数,调用前,将由*addrlen所指示的整数值置为由cliaddr所旨的套接口地址结构的长度,返回时,此整数值即为由内核存在此套接口地址结构内的准确字节数。

3.2 uClinux中网络通信编程的实现

在uCLinux中进行socket编程,一般按照图书资料所示流程编写网络应用程序。

除了熟悉前文提出的函数外,还应知道两个重要的数据结构。因为在计算机中,数据存储有两种字节优先顺序:高位字节优先和低位字节优先。在互联网上,数据是以高位字节优先顺序传输的,所以对于在内部以低位字节优先方式存储的数据,需要进行转换才能在互联网上传输。


*struct sockaddr:用来保存socket信息

struct sockaddr{unsigned short sa_family;/*地址族,AF_xxx*/

char sa_data[14]; /*14字节的协议地址*/};

*struct sockaddr_in;和来进行数据类型的转换

struct sockaddr_in{

short int sin_family; /*地址族*/

unsigned short int sin_port; /*端口号*/

sruct in_addr sin_addr; /*IP地址*/

unsigned cha sin_zero; /*填充0,以保持与struct sockaddr同样大小*/};

至此,可经编出uCLinux的网络通信工程程序。在此给出部分uCLinux下实现网络通信源代码及其Makefile文件的编写实例。

main()函数中部分代码如下:

int sockfd;

unsigned int uiip;

char szsendbuf[1024];

char head;

int*phead=head+4,nsize=1024,allsize=0;

struct sockaddr_in servaddr;

sockfd=socket(AF_INET,SOCK_STREAM,0);/*创建socket*/

bzero(%26;amp;servaddr,sizeof(struct sockaddr_in));

servaddr.sin_family=AF_INET;

servaddr.sin_port=8888;//htons(8888); /*指定通信端口*/将命令行输入的字符串IP转换为connect函数可识别的整数uiip。本来在Linux上开发时可以使用C库函数inet_pton(),但在uCLinux的库中不支持该函数,因此只好自己实现该函数的功能。

aiptoi()如下所示:

aiptoi(argv,%26;amp;uiip);

servaddr.sin_addr.s_addr=uiip; /*指定连接的对端IP*/

connect(sockfd,(struct sockaddr)%26;amp;servaddr,sizeof(struct sockaddr));

/*连接对端接收代码*/

fp=fopen(“kongzhi.htm”,“r”); /*打开控制页面*/

while(nsize==1024)

{bzero(szsendbuf,1024); /*每次从文件中读取巧024个字节发送出去,若读出少于1024字节结束*/

nsize=phead=fread(szsendbuf,1,1024,fp);/*从文件中读取并填入发送BUFFER中*/

write(sockfd,head,8);/*发送协议头*/

nsize=write(sockfd,szsendbuf,nsize);/*发送*/}

fclose(fp);

uCLinux中的Makefile需做的修改如下:

CC=gcc

COFF2FLAT=/uclinux/coff2flt-0.3/coff2flt

CFLAGS=-I/uclinux/uC-libc-pic/include

LDFLAGS=/uclinux/uC-libc-pic/libc.a

ethernet:Ethernet.o

$(CC)-o $@.coff ethernet.c $(CFLAGS)$(LDFLAGS)

$(COFF2FLAT)-o Ethernet ethernet.coff

cp Ethernet /Ethernet

clean:

rm -f Ethernet Ethernet.o

需要注意的是:①uCLinux中不带有pthread库,在编写网络程序要切记;②在uCLinux环境下,处理器(硬件)和内核黄素(软件)均不提供内存管理机制,所以程序的地址空间等同于内存的物理地址空间。在程序中可直接对I/O地址进行操作,而不需要申请和释放I/O空间,但需要用户自己来检查所操作的I/O地址的占用情况。


结语

由于网络通信工程广泛应用在嵌入式设备中,以往的文章只是泛泛地叙述网络通信设计的某一个方面。本文结合实际工程项目,从硬件电路的搭建、应用软件的设计要点。这对于在嵌入式设备中,特别是基于uCLinux的系统中应用网络通信有重要的参考意义。


文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    有志于单片机开发的童鞋能做一个参考 第一步: C语言基础,建议买一本谭浩强的《C语言程序设计》,如果不想买,可以在网上找一个PDF版; 微机原理与接口技术基础,建议去中国大学MOOC上看一下相关课程,也可以看C语言课程......
    》清华大学出版社出版的,在网上以及书店都是可以找到的。另外网上还可以搜索到很多其他的教材如:《微机原理及汇编语言教程》(杨延双 张晓冬 等编著 )和《16/32 位微机原理、汇编语言及接口技术......
    器件都会分配连续几个地址,即寄存器地址,为了和CPU内部寄存器地址的区别就叫端口地址,实际上就是通过使用端口地址来形成“选中”信号(实例《微型计算机原理与接口技术》第三版-冯博琴-吴宁-第5章P215......
     微机原理与接口技术 (牟琦)  微机原理与接口技术 (彭虎......
    如何学习51单片机;学过51单片机的人,都知道这个学习的过程可能不是那么“美好”,所以,今天给大家介绍一些关于51单片机的学习方法。 1、我从不说51是基础,如果我这么说,也请把这句话理解为微机原理......
    。2. 掌握单片机的接口技术及相关外围芯片的外特性,控制方法。3. 通过课程设计,掌握以单片机核心的电路设计的基本方法和技术,了解表关电路参数      的计算方法。4. 通过实际程序设计......
    用背景不同外,这些课程的教学内容基本相同,主要介绍温度、力、噪声等常见物理量的测量原理和测试信号的分析方法。目前,测试技术课程教学中存在的主要问题是传感器部分在课堂上教学没有实物对象,各种......
    肯定是学了,还有汇编我竟然也学了,51单片机,微机原理。 5.强电弱电:电路分析、模电、数电,这些都是要学的吧,还记得有一年实训是做一个收音机,按电路图把元器件焊上板子,放上......
    。而微机的原理以及接口技术对于51,arm或其它架构的mcu都是通用的,通过51来学习微机原理会涉及到汇编语言,因为只有汇编语言才能直接描述51内部的工作状态。笔者以过来人的身份推荐初学者从51......
    的目标将更加明确,学习也更加轻松。 如果你的定位不清晰,你就会人云亦云,去死磕模电数电,去死磕微机原理,去死磕芯片手册。 这些都是你走弯路的表现,特别是模拟电路,很多人从事开发几年依然看不懂,你指......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>